Update app.py
Browse files
app.py
CHANGED
@@ -64,10 +64,13 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
|
64 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
65 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
66 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
67 |
-
vaeSD3 = AutoencoderKL.from_pretrained("
|
68 |
-
|
69 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16",token=True)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
pipe.load_lora_weights('ford442/sdxl-vae-bf16', weight_name='LoRA/bm-goth_epoch_9.safetensors')
|
72 |
|
73 |
|
@@ -80,7 +83,6 @@ pipe.load_lora_weights('ford442/sdxl-vae-bf16', weight_name='LoRA/bm-goth_epoch_
|
|
80 |
#pipe.scheduler.config.requires_aesthetics_score = False
|
81 |
#pipe.enable_model_cpu_offload()
|
82 |
#pipe.to(device)
|
83 |
-
pipe.vae=vaeSD3
|
84 |
pipe.to(device)
|
85 |
|
86 |
#pipe = torch.compile(pipe)
|
|
|
64 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
65 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
66 |
#vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
67 |
+
vaeSD3 = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", subfolder='sd3-medium-vae', safety_checker=None) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
68 |
|
69 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16",
|
70 |
+
vae=None,
|
71 |
+
token=True
|
72 |
+
)
|
73 |
+
pipe.vae=vaeSD3
|
74 |
pipe.load_lora_weights('ford442/sdxl-vae-bf16', weight_name='LoRA/bm-goth_epoch_9.safetensors')
|
75 |
|
76 |
|
|
|
83 |
#pipe.scheduler.config.requires_aesthetics_score = False
|
84 |
#pipe.enable_model_cpu_offload()
|
85 |
#pipe.to(device)
|
|
|
86 |
pipe.to(device)
|
87 |
|
88 |
#pipe = torch.compile(pipe)
|