|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
|
from .attention import JointTransformerBlock
|
|
from diffusers.models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNormContinuous
|
|
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
|
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
|
"""
|
|
The Transformer model introduced in Stable Diffusion 3.
|
|
|
|
Reference: https://arxiv.org/abs/2403.03206
|
|
|
|
Parameters:
|
|
sample_size (`int`): The width of the latent images. This is fixed during training since
|
|
it is used to learn a number of position embeddings.
|
|
patch_size (`int`): Patch size to turn the input data into small patches.
|
|
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
|
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
|
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
|
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
|
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
|
out_channels (`int`, defaults to 16): Number of output channels.
|
|
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
sample_size: int = 128,
|
|
patch_size: int = 2,
|
|
in_channels: int = 16,
|
|
num_layers: int = 18,
|
|
attention_head_dim: int = 64,
|
|
num_attention_heads: int = 18,
|
|
joint_attention_dim: int = 4096,
|
|
caption_projection_dim: int = 1152,
|
|
pooled_projection_dim: int = 2048,
|
|
out_channels: int = 16,
|
|
pos_embed_max_size: int = 96,
|
|
dual_attention_layers: Tuple[
|
|
int, ...
|
|
] = (),
|
|
qk_norm: Optional[str] = None,
|
|
):
|
|
super().__init__()
|
|
default_out_channels = in_channels
|
|
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
|
|
|
self.pos_embed = PatchEmbed(
|
|
height=self.config.sample_size,
|
|
width=self.config.sample_size,
|
|
patch_size=self.config.patch_size,
|
|
in_channels=self.config.in_channels,
|
|
embed_dim=self.inner_dim,
|
|
pos_embed_max_size=pos_embed_max_size,
|
|
)
|
|
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
|
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
|
)
|
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
|
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
JointTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=self.config.num_attention_heads,
|
|
attention_head_dim=self.config.attention_head_dim,
|
|
context_pre_only=i == num_layers - 1,
|
|
qk_norm=qk_norm,
|
|
use_dual_attention=True if i in dual_attention_layers else False,
|
|
)
|
|
for i in range(self.config.num_layers)
|
|
]
|
|
)
|
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
|
"""
|
|
Sets the attention processor to use [feed forward
|
|
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
|
|
|
Parameters:
|
|
chunk_size (`int`, *optional*):
|
|
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
|
over each tensor of dim=`dim`.
|
|
dim (`int`, *optional*, defaults to `0`):
|
|
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
|
or dim=1 (sequence length).
|
|
"""
|
|
if dim not in [0, 1]:
|
|
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
|
|
|
|
|
chunk_size = chunk_size or 1
|
|
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
|
if hasattr(module, "set_chunk_feed_forward"):
|
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
|
|
|
for child in module.children():
|
|
fn_recursive_feed_forward(child, chunk_size, dim)
|
|
|
|
for module in self.children():
|
|
fn_recursive_feed_forward(module, chunk_size, dim)
|
|
|
|
|
|
def disable_forward_chunking(self):
|
|
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
|
if hasattr(module, "set_chunk_feed_forward"):
|
|
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
|
|
|
for child in module.children():
|
|
fn_recursive_feed_forward(child, chunk_size, dim)
|
|
|
|
for module in self.children():
|
|
fn_recursive_feed_forward(module, None, 0)
|
|
|
|
@property
|
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
|
r"""
|
|
Returns:
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
indexed by its weight name.
|
|
"""
|
|
|
|
processors = {}
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
|
if hasattr(module, "get_processor"):
|
|
processors[f"{name}.processor"] = module.get_processor()
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
return processors
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
return processors
|
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
|
r"""
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
Parameters:
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
for **all** `Attention` layers.
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
"""
|
|
count = len(self.attn_processors.keys())
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
raise ValueError(
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
)
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
if hasattr(module, "set_processor"):
|
|
if not isinstance(processor, dict):
|
|
module.set_processor(processor)
|
|
else:
|
|
module.set_processor(processor.pop(f"{name}.processor"))
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
|
|
def fuse_qkv_projections(self):
|
|
"""
|
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
|
are fused. For cross-attention modules, key and value projection matrices are fused.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
"""
|
|
self.original_attn_processors = None
|
|
|
|
for _, attn_processor in self.attn_processors.items():
|
|
if "Added" in str(attn_processor.__class__.__name__):
|
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
|
|
|
self.original_attn_processors = self.attn_processors
|
|
|
|
for module in self.modules():
|
|
if isinstance(module, Attention):
|
|
module.fuse_projections(fuse=True)
|
|
|
|
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
|
|
|
|
|
def unfuse_qkv_projections(self):
|
|
"""Disables the fused QKV projection if enabled.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
|
|
"""
|
|
if self.original_attn_processors is not None:
|
|
self.set_attn_processor(self.original_attn_processors)
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: torch.FloatTensor = None,
|
|
pooled_projections: torch.FloatTensor = None,
|
|
timestep: torch.LongTensor = None,
|
|
block_controlnet_hidden_states: List = None,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
|
"""
|
|
The [`SD3Transformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
|
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
|
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
|
from the embeddings of input conditions.
|
|
timestep ( `torch.LongTensor`):
|
|
Used to indicate denoising step.
|
|
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
|
A list of tensors that if specified are added to the residuals of transformer blocks.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
if joint_attention_kwargs is not None:
|
|
joint_attention_kwargs = joint_attention_kwargs.copy()
|
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
|
else:
|
|
lora_scale = 1.0
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
scale_lora_layers(self, lora_scale)
|
|
else:
|
|
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
|
logger.warning(
|
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
|
)
|
|
|
|
height, width = hidden_states.shape[-2:]
|
|
|
|
hidden_states = self.pos_embed(hidden_states)
|
|
temb = self.time_text_embed(timestep, pooled_projections)
|
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks):
|
|
if self.training and self.gradient_checkpointing:
|
|
|
|
def create_custom_forward(module, return_dict=None):
|
|
def custom_forward(*inputs):
|
|
if return_dict is not None:
|
|
return module(*inputs, return_dict=return_dict)
|
|
else:
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(block),
|
|
hidden_states,
|
|
encoder_hidden_states,
|
|
temb,
|
|
joint_attention_kwargs,
|
|
**ckpt_kwargs,
|
|
)
|
|
|
|
else:
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb,
|
|
joint_attention_kwargs=joint_attention_kwargs,
|
|
)
|
|
|
|
|
|
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
|
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
|
|
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
|
|
patch_size = self.config.patch_size
|
|
height = height // patch_size
|
|
width = width // patch_size
|
|
|
|
hidden_states = hidden_states.reshape(
|
|
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
|
)
|
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
|
output = hidden_states.reshape(
|
|
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
|
)
|
|
|
|
if USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self, lora_scale)
|
|
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer2DModelOutput(sample=output)
|
|
|