import torch import torch.nn as nn from dataclasses import dataclass from transformers.utils import ModelOutput from transformers.cache_utils import Cache from typing import Optional, List, Tuple, Union from transformers.loss.loss_utils import ForCausalLMLoss from transformers.generation.streamers import BaseStreamer from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.generation.configuration_utils import GenerationConfig from transformers.generation.stopping_criteria import StoppingCriteriaList from transformers import PreTrainedModel, GenerationMixin, Qwen3Config, Qwen3Model from transformers.generation.logits_process import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper class AsteroidTTSConfig(Qwen3Config): def __init__(self, channels = 8, speech_pad_token = 1024, speech_vocab_size = 1025, speech_token_range = [], **kwargs): super().__init__(**kwargs) self.channels = channels self.speech_pad_token = speech_pad_token self.speech_vocab_size = speech_vocab_size self.speech_token_range = speech_token_range @dataclass class AsteroidTTSOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None loss_all: Optional[Tuple[torch.FloatTensor]] = None logits_all: Optional[Tuple[torch.FloatTensor]] = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class GenerateDecoderOnlyOutput(ModelOutput): sequences: torch.LongTensor = None scores: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None class CustomMixin(GenerationMixin): def _sample( self, input_ids: torch.LongTensor, logits_processor: LogitsProcessorList, stopping_criteria: StoppingCriteriaList, generation_config: GenerationConfig, synced_gpus: bool, streamer: Optional["BaseStreamer"], **model_kwargs, ) -> Union[GenerateDecoderOnlyOutput, torch.LongTensor]: # 提取配置参数 speech_pad_idx = self.config.speech_pad_token eos_token_id = generation_config.eos_token_id output_attentions = generation_config.output_attentions output_hidden_states = generation_config.output_hidden_states output_scores = generation_config.output_scores output_logits = generation_config.output_logits return_dict_in_generate = generation_config.return_dict_in_generate max_length = generation_config.max_length has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria) do_sample = generation_config.do_sample # 初始化输出元组 scores = () if (return_dict_in_generate and output_scores) else None raw_logits = () if (return_dict_in_generate and output_logits) else None decoder_attentions = () if (return_dict_in_generate and output_attentions) else None decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None # 初始化跟踪变量 batch_size, cur_len, channels = input_ids.shape # channels = 8 this_peer_finished = False unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) needs_additional_steps = -1 * torch.ones(batch_size, dtype=torch.long, device=input_ids.device) tf_inputs = input_ids[:] input_ids = input_ids[:, :-(channels - 1)] model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, :-(channels - 1)] base_length = input_ids.shape[1] model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs) # 定义logits processor if generation_config.do_samples is not None: do_samples = generation_config.do_samples realprocessor = [LogitsProcessorList() for _ in range(channels)] for i, layer_config in enumerate(generation_config.layers): if layer_config.get("repetition_penalty") is not None: realprocessor[i].append(RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty"))) if layer_config.get("temperature") is not None: realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature"))) if layer_config.get("top_k") is not None: realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k"))) if layer_config.get("top_p") is not None: realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p"))) else: do_samples = [do_sample for _ in range(channels)] realprocessor = [logits_processor for _ in range(channels)] while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device): # 准备模型输入 model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) model_inputs.update({"output_attentions": output_attentions} if output_attentions else {}) model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {}) # 前向传递 outputs = self(**model_inputs, return_dict=True) model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs) if synced_gpus and this_peer_finished: continue # 获取下一个 token 的 logits next_token_logits = [logits[:, -1, :].clone().float().to(input_ids.device) for logits in outputs.logits_all] for i, channel_logits in enumerate(next_token_logits): if i != 0 and input_ids.shape[1] + 1 > tf_inputs.shape[1] - 7 + i: channel_logits[:, 1024] = - torch.inf if i == 0 and input_ids.shape[1] + 1 <= tf_inputs.shape[1]: channel_logits[:, 152694] = - torch.inf next_token_scores = [realprocessor[i](input_ids[..., i], logits) for i, logits in enumerate(next_token_logits)] # 生成下一个 token next_tokens = [] for i, channel_score in enumerate(next_token_scores): if do_samples[i]: channel_ntk = torch.multinomial(nn.functional.softmax(channel_score, dim=-1), num_samples=1).squeeze(1) elif not do_samples[i]: channel_ntk = torch.argmax(channel_score, dim=-1) next_tokens.append(channel_ntk) next_tokens = torch.stack(next_tokens, dim=-1) # [batch_size, channels] # 额外步骤逻辑 indices = (~self.is_speech_token(next_tokens[:, 0])) & (needs_additional_steps < 0) needs_additional_steps[indices] = channels - 1 # 对于 8 个通道,需要 6 步 if input_ids.shape[1] + 1 <= tf_inputs.shape[1]: i = input_ids.shape[1] + 1 - base_length next_tokens[:, i:] = tf_inputs[:, input_ids.shape[1], i:] # 在额外步骤中替换 token mask = (needs_additional_steps > 0) & (needs_additional_steps < 7) if mask.any().item(): next_tokens[mask, 0] = self.config.eos_token_id for i in range(1, channels): mask_i = mask & (needs_additional_steps < channels - i) next_tokens[mask_i, i] = speech_pad_idx if has_eos_stopping_criteria: for i in range(channels): pddp = self.config.eos_token_id if i == 0 else speech_pad_idx next_tokens[:, i] = next_tokens[:, i] * unfinished_sequences + pddp * (1 - unfinished_sequences) input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1) if streamer is not None: streamer.put(next_tokens[:, 0].cpu()) # 更新 unfinished_sequences needs_additional_steps = torch.where(needs_additional_steps > 0, needs_additional_steps - 1, needs_additional_steps) stopping = stopping_criteria(input_ids[..., 0], scores) | (needs_additional_steps == 0) unfinished_sequences = unfinished_sequences & ~stopping unfinished_sequences = unfinished_sequences | (needs_additional_steps > 0) this_peer_finished = unfinished_sequences.max() == 0 if return_dict_in_generate: if output_scores: scores += (next_token_scores,) if output_logits: raw_logits += (next_token_logits,) if output_attentions: decoder_attentions += (outputs.attentions,) if output_hidden_states: decoder_hidden_states += (outputs.hidden_states,) cur_len += 1 del outputs if streamer is not None: streamer.end() if return_dict_in_generate: return GenerateDecoderOnlyOutput( sequences=input_ids, scores=scores, logits=raw_logits, attentions=decoder_attentions, hidden_states=decoder_hidden_states, past_key_values=model_kwargs.get("past_key_values"), ) else: return input_ids class AsteroidTTSPretrainedModel(PreTrainedModel): config_class = AsteroidTTSConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Qwen3DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True class AsteroidTTSModel(AsteroidTTSPretrainedModel): def __init__(self, config: AsteroidTTSConfig): super().__init__(config) self.text_pad_idx = config.pad_token_id self.speech_pad_idx = config.speech_pad_token self.embedding_list = nn.ModuleList([]) self.embedding_list.append(nn.Embedding(config.vocab_size, config.hidden_size, self.text_pad_idx)) # Channels 1 to channels-1: Speech tokens only for _ in range(1, config.channels): self.embedding_list.append(nn.Embedding(config.speech_vocab_size, config.hidden_size, self.speech_pad_idx)) self.language_model = Qwen3Model(config) self.post_init() def get_input_embeddings(self): return self.embedding_list[0] def set_input_embeddings(self, value: nn.Embedding): self.embedding_list[0] = value def _prepare_multi_modal_inputs(self, input_ids: torch.LongTensor) -> torch.FloatTensor: """ Prepares multi-modal embeddings from input_ids of shape (batch_size, channels, sequence_length). For channel 0: text + speech tokens, for channels 1 to channels-1: speech tokens padded with speech_pad_token. """ batch_size, seq_length, channels = input_ids.shape if channels != self.config.channels: raise ValueError(f"Expected {self.config.channels} channels, got {channels}") inputs_embeds = torch.zeros(batch_size, seq_length, self.config.hidden_size, device=input_ids.device, dtype=self.embedding_list[0].weight.dtype) for i in range(channels): embed_layer = self.embedding_list[i] channel_input = input_ids[...,i] inputs_embeds += embed_layer(channel_input) return inputs_embeds def forward( self, input_ids: torch.LongTensor = None, # Shape: (batch_size, channels, sequence_length) attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[Tuple, BaseModelOutputWithPast]: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if input_ids is not None: inputs_embeds = self._prepare_multi_modal_inputs(input_ids) outputs = self.language_model( input_ids=None, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) return outputs class AsteroidTTSInstruct(AsteroidTTSPretrainedModel, CustomMixin): _tied_weights_keys = [] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config: AsteroidTTSConfig): super().__init__(config) self.model = AsteroidTTSModel(config) self.channels = config.channels self.weights = [1 for _ in range(self.channels)] self._tied_weights_keys = [f"lm_heads.{i}.weight" for i in range(self.channels)] self.vocab_size = config.vocab_size self.lm_heads = nn.ModuleList([]) self.lm_heads.append(nn.Linear(config.hidden_size, config.vocab_size, bias=False)) for _ in range(1, config.channels): self.lm_heads.append(nn.Linear(config.hidden_size, config.speech_vocab_size, bias=False)) self.post_init() def get_input_embeddings(self): return self.model.embedding_list[0] def can_generate(self): return True def is_speech_token(self, tokens): return (tokens >= self.config.speech_token_range[0]) & (tokens < self.config.speech_token_range[1]) def tie_weights(self): for i in range(self.config.channels): self._tie_or_clone_weights(self.lm_heads[i], self.model.embedding_list[i]) def set_input_embeddings(self, value): self.model.embedding_list[0] = value def get_output_embeddings(self): return self.lm_heads[0] def set_output_embeddings(self, new_embeddings): self.lm_heads[0] = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def set_weights(self, weights): self.weights = weights def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Union[Tuple, AsteroidTTSOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] logits_all = [lm_head(hidden_states) for lm_head in self.lm_heads] loss_all = torch.empty(self.channels, device=input_ids.device if not input_ids is None else inputs_embeds.device) if labels is not None: for i in range(self.config.channels): vocab_size = self.config.vocab_size if i == 0 else self.config.speech_vocab_size loss_all[i] = ForCausalLMLoss(logits_all[i], labels[..., i], vocab_size) # total_weight = sum(self.weights) # normalized_weights = [w / total_weight for w in self.weights] normalized_weights = self.weights total_loss = 0 for w, loss in zip(normalized_weights, loss_all): total_loss += w * loss if not return_dict: output = (logits_all,) + outputs[1:] return (total_loss, loss_all, ) + output if loss is not None else output return AsteroidTTSOutputWithPast( loss=total_loss, logits=logits_all[0], loss_all=loss_all, logits_all=logits_all, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )