Spaces:
Running
on
L40S
Running
on
L40S
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from ..utils.multitalk_utils import RotaryPositionalEmbedding1D, normalize_and_scale, split_token_counts_and_frame_ids | |
from xfuser.core.distributed import ( | |
get_sequence_parallel_rank, | |
get_sequence_parallel_world_size, | |
get_sp_group, | |
) | |
import xformers.ops | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
import warnings | |
__all__ = [ | |
'flash_attention', | |
'attention', | |
] | |
def flash_attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
version=None, | |
): | |
""" | |
q: [B, Lq, Nq, C1]. | |
k: [B, Lk, Nk, C1]. | |
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. | |
q_lens: [B]. | |
k_lens: [B]. | |
dropout_p: float. Dropout probability. | |
softmax_scale: float. The scaling of QK^T before applying softmax. | |
causal: bool. Whether to apply causal attention mask. | |
window_size: (left right). If not (-1, -1), apply sliding window local attention. | |
deterministic: bool. If True, slightly slower and uses more memory. | |
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. | |
""" | |
half_dtypes = (torch.float16, torch.bfloat16) | |
assert dtype in half_dtypes | |
assert q.device.type == 'cuda' and q.size(-1) <= 256 | |
# params | |
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# preprocess query | |
if q_lens is None: | |
q = half(q.flatten(0, 1)) | |
q_lens = torch.tensor( | |
[lq] * b, dtype=torch.int32).to( | |
device=q.device, non_blocking=True) | |
else: | |
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) | |
# preprocess key, value | |
if k_lens is None: | |
k = half(k.flatten(0, 1)) | |
v = half(v.flatten(0, 1)) | |
k_lens = torch.tensor( | |
[lk] * b, dtype=torch.int32).to( | |
device=k.device, non_blocking=True) | |
else: | |
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) | |
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) | |
q = q.to(v.dtype) | |
k = k.to(v.dtype) | |
if q_scale is not None: | |
q = q * q_scale | |
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
warnings.warn( | |
'Flash attention 3 is not available, use flash attention 2 instead.' | |
) | |
# apply attention | |
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: | |
# Note: dropout_p, window_size are not supported in FA3 now. | |
x = flash_attn_interface.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
seqused_q=None, | |
seqused_k=None, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
deterministic=deterministic)[0].unflatten(0, (b, lq)) | |
else: | |
assert FLASH_ATTN_2_AVAILABLE | |
x = flash_attn.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( | |
0, dtype=torch.int32).to(q.device, non_blocking=True), | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic).unflatten(0, (b, lq)) | |
# output | |
return x.type(out_dtype) | |
def attention( | |
q, | |
k, | |
v, | |
q_lens=None, | |
k_lens=None, | |
dropout_p=0., | |
softmax_scale=None, | |
q_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
dtype=torch.bfloat16, | |
fa_version=None, | |
): | |
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: | |
return flash_attention( | |
q=q, | |
k=k, | |
v=v, | |
q_lens=q_lens, | |
k_lens=k_lens, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
q_scale=q_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic, | |
dtype=dtype, | |
version=fa_version, | |
) | |
else: | |
if q_lens is not None or k_lens is not None: | |
warnings.warn( | |
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' | |
) | |
attn_mask = None | |
q = q.transpose(1, 2).to(dtype) | |
k = k.transpose(1, 2).to(dtype) | |
v = v.transpose(1, 2).to(dtype) | |
out = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) | |
out = out.transpose(1, 2).contiguous() | |
return out | |
class SingleStreamAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
encoder_hidden_states_dim: int, | |
num_heads: int, | |
qkv_bias: bool, | |
qk_norm: bool, | |
norm_layer: nn.Module, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
eps: float = 1e-6, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.dim = dim | |
self.encoder_hidden_states_dim = encoder_hidden_states_dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.qk_norm = qk_norm | |
self.q_linear = nn.Linear(dim, dim, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim, eps=eps) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim,eps=eps) if qk_norm else nn.Identity() | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.kv_linear = nn.Linear(encoder_hidden_states_dim, dim * 2, bias=qkv_bias) | |
self.add_q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.add_k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
def forward(self, x: torch.Tensor, encoder_hidden_states: torch.Tensor, shape=None, enable_sp=False, kv_seq=None) -> torch.Tensor: | |
N_t, N_h, N_w = shape | |
if not enable_sp: | |
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t) | |
# get q for hidden_state | |
B, N, C = x.shape | |
q = self.q_linear(x) | |
q_shape = (B, N, self.num_heads, self.head_dim) | |
q = q.view(q_shape).permute((0, 2, 1, 3)) | |
if self.qk_norm: | |
q = self.q_norm(q) | |
# get kv from encoder_hidden_states | |
_, N_a, _ = encoder_hidden_states.shape | |
encoder_kv = self.kv_linear(encoder_hidden_states) | |
encoder_kv_shape = (B, N_a, 2, self.num_heads, self.head_dim) | |
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4)) | |
encoder_k, encoder_v = encoder_kv.unbind(0) | |
if self.qk_norm: | |
encoder_k = self.add_k_norm(encoder_k) | |
q = rearrange(q, "B H M K -> B M H K") | |
encoder_k = rearrange(encoder_k, "B H M K -> B M H K") | |
encoder_v = rearrange(encoder_v, "B H M K -> B M H K") | |
if enable_sp: | |
# context parallel | |
sp_size = get_sequence_parallel_world_size() | |
sp_rank = get_sequence_parallel_rank() | |
visual_seqlen, _ = split_token_counts_and_frame_ids(N_t, N_h * N_w, sp_size, sp_rank) | |
assert kv_seq is not None, f"kv_seq should not be None." | |
attn_bias = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(visual_seqlen, kv_seq) | |
else: | |
attn_bias = None | |
x = xformers.ops.memory_efficient_attention(q, encoder_k, encoder_v, attn_bias=attn_bias, op=None,) | |
x = rearrange(x, "B M H K -> B H M K") | |
# linear transform | |
x_output_shape = (B, N, C) | |
x = x.transpose(1, 2) | |
x = x.reshape(x_output_shape) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
if not enable_sp: | |
# reshape x to origin shape | |
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t) | |
return x | |
class SingleStreamMutiAttention(SingleStreamAttention): | |
def __init__( | |
self, | |
dim: int, | |
encoder_hidden_states_dim: int, | |
num_heads: int, | |
qkv_bias: bool, | |
qk_norm: bool, | |
norm_layer: nn.Module, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
eps: float = 1e-6, | |
class_range: int = 24, | |
class_interval: int = 4, | |
) -> None: | |
super().__init__( | |
dim=dim, | |
encoder_hidden_states_dim=encoder_hidden_states_dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_norm=qk_norm, | |
norm_layer=norm_layer, | |
attn_drop=attn_drop, | |
proj_drop=proj_drop, | |
eps=eps, | |
) | |
self.class_interval = class_interval | |
self.class_range = class_range | |
self.rope_h1 = (0, self.class_interval) | |
self.rope_h2 = (self.class_range - self.class_interval, self.class_range) | |
self.rope_bak = int(self.class_range // 2) | |
self.rope_1d = RotaryPositionalEmbedding1D(self.head_dim) | |
def forward(self, | |
x: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
shape=None, | |
x_ref_attn_map=None, | |
human_num=None) -> torch.Tensor: | |
encoder_hidden_states = encoder_hidden_states.squeeze(0) | |
if human_num == 1: | |
return super().forward(x, encoder_hidden_states, shape) | |
N_t, _, _ = shape | |
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t) | |
# get q for hidden_state | |
B, N, C = x.shape | |
q = self.q_linear(x) | |
q_shape = (B, N, self.num_heads, self.head_dim) | |
q = q.view(q_shape).permute((0, 2, 1, 3)) | |
if self.qk_norm: | |
q = self.q_norm(q) | |
max_values = x_ref_attn_map.max(1).values[:, None, None] | |
min_values = x_ref_attn_map.min(1).values[:, None, None] | |
max_min_values = torch.cat([max_values, min_values], dim=2) | |
human1_max_value, human1_min_value = max_min_values[0, :, 0].max(), max_min_values[0, :, 1].min() | |
human2_max_value, human2_min_value = max_min_values[1, :, 0].max(), max_min_values[1, :, 1].min() | |
human1 = normalize_and_scale(x_ref_attn_map[0], (human1_min_value, human1_max_value), (self.rope_h1[0], self.rope_h1[1])) | |
human2 = normalize_and_scale(x_ref_attn_map[1], (human2_min_value, human2_max_value), (self.rope_h2[0], self.rope_h2[1])) | |
back = torch.full((x_ref_attn_map.size(1),), self.rope_bak, dtype=human1.dtype).to(human1.device) | |
max_indices = x_ref_attn_map.argmax(dim=0) | |
normalized_map = torch.stack([human1, human2, back], dim=1) | |
normalized_pos = normalized_map[range(x_ref_attn_map.size(1)), max_indices] # N | |
q = rearrange(q, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t) | |
q = self.rope_1d(q, normalized_pos) | |
q = rearrange(q, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t) | |
_, N_a, _ = encoder_hidden_states.shape | |
encoder_kv = self.kv_linear(encoder_hidden_states) | |
encoder_kv_shape = (B, N_a, 2, self.num_heads, self.head_dim) | |
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4)) | |
encoder_k, encoder_v = encoder_kv.unbind(0) | |
if self.qk_norm: | |
encoder_k = self.add_k_norm(encoder_k) | |
per_frame = torch.zeros(N_a, dtype=encoder_k.dtype).to(encoder_k.device) | |
per_frame[:per_frame.size(0)//2] = (self.rope_h1[0] + self.rope_h1[1]) / 2 | |
per_frame[per_frame.size(0)//2:] = (self.rope_h2[0] + self.rope_h2[1]) / 2 | |
encoder_pos = torch.concat([per_frame]*N_t, dim=0) | |
encoder_k = rearrange(encoder_k, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t) | |
encoder_k = self.rope_1d(encoder_k, encoder_pos) | |
encoder_k = rearrange(encoder_k, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t) | |
q = rearrange(q, "B H M K -> B M H K") | |
encoder_k = rearrange(encoder_k, "B H M K -> B M H K") | |
encoder_v = rearrange(encoder_v, "B H M K -> B M H K") | |
x = xformers.ops.memory_efficient_attention(q, encoder_k, encoder_v, attn_bias=None, op=None,) | |
x = rearrange(x, "B M H K -> B H M K") | |
# linear transform | |
x_output_shape = (B, N, C) | |
x = x.transpose(1, 2) | |
x = x.reshape(x_output_shape) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
# reshape x to origin shape | |
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t) | |
return x |