fffiloni's picture
Migrated from GitHub
2d438a0 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
import torch.nn as nn
from einops import rearrange, repeat
from ..utils.multitalk_utils import RotaryPositionalEmbedding1D, normalize_and_scale, split_token_counts_and_frame_ids
from xfuser.core.distributed import (
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group,
)
import xformers.ops
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
import warnings
__all__ = [
'flash_attention',
'attention',
]
def flash_attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
version=None,
):
"""
q: [B, Lq, Nq, C1].
k: [B, Lk, Nk, C1].
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
q_lens: [B].
k_lens: [B].
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
causal: bool. Whether to apply causal attention mask.
window_size: (left right). If not (-1, -1), apply sliding window local attention.
deterministic: bool. If True, slightly slower and uses more memory.
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
"""
half_dtypes = (torch.float16, torch.bfloat16)
assert dtype in half_dtypes
assert q.device.type == 'cuda' and q.size(-1) <= 256
# params
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# preprocess query
if q_lens is None:
q = half(q.flatten(0, 1))
q_lens = torch.tensor(
[lq] * b, dtype=torch.int32).to(
device=q.device, non_blocking=True)
else:
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
# preprocess key, value
if k_lens is None:
k = half(k.flatten(0, 1))
v = half(v.flatten(0, 1))
k_lens = torch.tensor(
[lk] * b, dtype=torch.int32).to(
device=k.device, non_blocking=True)
else:
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
q = q.to(v.dtype)
k = k.to(v.dtype)
if q_scale is not None:
q = q * q_scale
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
warnings.warn(
'Flash attention 3 is not available, use flash attention 2 instead.'
)
# apply attention
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
# Note: dropout_p, window_size are not supported in FA3 now.
x = flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
seqused_q=None,
seqused_k=None,
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic)[0].unflatten(0, (b, lq))
else:
assert FLASH_ATTN_2_AVAILABLE
x = flash_attn.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic).unflatten(0, (b, lq))
# output
return x.type(out_dtype)
def attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
fa_version=None,
):
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
return flash_attention(
q=q,
k=k,
v=v,
q_lens=q_lens,
k_lens=k_lens,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
q_scale=q_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic,
dtype=dtype,
version=fa_version,
)
else:
if q_lens is not None or k_lens is not None:
warnings.warn(
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
)
attn_mask = None
q = q.transpose(1, 2).to(dtype)
k = k.transpose(1, 2).to(dtype)
v = v.transpose(1, 2).to(dtype)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
out = out.transpose(1, 2).contiguous()
return out
class SingleStreamAttention(nn.Module):
def __init__(
self,
dim: int,
encoder_hidden_states_dim: int,
num_heads: int,
qkv_bias: bool,
qk_norm: bool,
norm_layer: nn.Module,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
eps: float = 1e-6,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.encoder_hidden_states_dim = encoder_hidden_states_dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.qk_norm = qk_norm
self.q_linear = nn.Linear(dim, dim, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim, eps=eps) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim,eps=eps) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.kv_linear = nn.Linear(encoder_hidden_states_dim, dim * 2, bias=qkv_bias)
self.add_q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.add_k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
def forward(self, x: torch.Tensor, encoder_hidden_states: torch.Tensor, shape=None, enable_sp=False, kv_seq=None) -> torch.Tensor:
N_t, N_h, N_w = shape
if not enable_sp:
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t)
# get q for hidden_state
B, N, C = x.shape
q = self.q_linear(x)
q_shape = (B, N, self.num_heads, self.head_dim)
q = q.view(q_shape).permute((0, 2, 1, 3))
if self.qk_norm:
q = self.q_norm(q)
# get kv from encoder_hidden_states
_, N_a, _ = encoder_hidden_states.shape
encoder_kv = self.kv_linear(encoder_hidden_states)
encoder_kv_shape = (B, N_a, 2, self.num_heads, self.head_dim)
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4))
encoder_k, encoder_v = encoder_kv.unbind(0)
if self.qk_norm:
encoder_k = self.add_k_norm(encoder_k)
q = rearrange(q, "B H M K -> B M H K")
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
if enable_sp:
# context parallel
sp_size = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
visual_seqlen, _ = split_token_counts_and_frame_ids(N_t, N_h * N_w, sp_size, sp_rank)
assert kv_seq is not None, f"kv_seq should not be None."
attn_bias = xformers.ops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(visual_seqlen, kv_seq)
else:
attn_bias = None
x = xformers.ops.memory_efficient_attention(q, encoder_k, encoder_v, attn_bias=attn_bias, op=None,)
x = rearrange(x, "B M H K -> B H M K")
# linear transform
x_output_shape = (B, N, C)
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
if not enable_sp:
# reshape x to origin shape
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t)
return x
class SingleStreamMutiAttention(SingleStreamAttention):
def __init__(
self,
dim: int,
encoder_hidden_states_dim: int,
num_heads: int,
qkv_bias: bool,
qk_norm: bool,
norm_layer: nn.Module,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
eps: float = 1e-6,
class_range: int = 24,
class_interval: int = 4,
) -> None:
super().__init__(
dim=dim,
encoder_hidden_states_dim=encoder_hidden_states_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
norm_layer=norm_layer,
attn_drop=attn_drop,
proj_drop=proj_drop,
eps=eps,
)
self.class_interval = class_interval
self.class_range = class_range
self.rope_h1 = (0, self.class_interval)
self.rope_h2 = (self.class_range - self.class_interval, self.class_range)
self.rope_bak = int(self.class_range // 2)
self.rope_1d = RotaryPositionalEmbedding1D(self.head_dim)
def forward(self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor,
shape=None,
x_ref_attn_map=None,
human_num=None) -> torch.Tensor:
encoder_hidden_states = encoder_hidden_states.squeeze(0)
if human_num == 1:
return super().forward(x, encoder_hidden_states, shape)
N_t, _, _ = shape
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t)
# get q for hidden_state
B, N, C = x.shape
q = self.q_linear(x)
q_shape = (B, N, self.num_heads, self.head_dim)
q = q.view(q_shape).permute((0, 2, 1, 3))
if self.qk_norm:
q = self.q_norm(q)
max_values = x_ref_attn_map.max(1).values[:, None, None]
min_values = x_ref_attn_map.min(1).values[:, None, None]
max_min_values = torch.cat([max_values, min_values], dim=2)
human1_max_value, human1_min_value = max_min_values[0, :, 0].max(), max_min_values[0, :, 1].min()
human2_max_value, human2_min_value = max_min_values[1, :, 0].max(), max_min_values[1, :, 1].min()
human1 = normalize_and_scale(x_ref_attn_map[0], (human1_min_value, human1_max_value), (self.rope_h1[0], self.rope_h1[1]))
human2 = normalize_and_scale(x_ref_attn_map[1], (human2_min_value, human2_max_value), (self.rope_h2[0], self.rope_h2[1]))
back = torch.full((x_ref_attn_map.size(1),), self.rope_bak, dtype=human1.dtype).to(human1.device)
max_indices = x_ref_attn_map.argmax(dim=0)
normalized_map = torch.stack([human1, human2, back], dim=1)
normalized_pos = normalized_map[range(x_ref_attn_map.size(1)), max_indices] # N
q = rearrange(q, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
q = self.rope_1d(q, normalized_pos)
q = rearrange(q, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
_, N_a, _ = encoder_hidden_states.shape
encoder_kv = self.kv_linear(encoder_hidden_states)
encoder_kv_shape = (B, N_a, 2, self.num_heads, self.head_dim)
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4))
encoder_k, encoder_v = encoder_kv.unbind(0)
if self.qk_norm:
encoder_k = self.add_k_norm(encoder_k)
per_frame = torch.zeros(N_a, dtype=encoder_k.dtype).to(encoder_k.device)
per_frame[:per_frame.size(0)//2] = (self.rope_h1[0] + self.rope_h1[1]) / 2
per_frame[per_frame.size(0)//2:] = (self.rope_h2[0] + self.rope_h2[1]) / 2
encoder_pos = torch.concat([per_frame]*N_t, dim=0)
encoder_k = rearrange(encoder_k, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
encoder_k = self.rope_1d(encoder_k, encoder_pos)
encoder_k = rearrange(encoder_k, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
q = rearrange(q, "B H M K -> B M H K")
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
x = xformers.ops.memory_efficient_attention(q, encoder_k, encoder_v, attn_bias=None, op=None,)
x = rearrange(x, "B M H K -> B H M K")
# linear transform
x_output_shape = (B, N, C)
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
# reshape x to origin shape
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t)
return x