fffiloni's picture
cache method for model downloads
d516aa4 verified
raw
history blame
5.39 kB
import torch
import os
import shutil
import subprocess
import gradio as gr
import json
import tempfile
from huggingface_hub import snapshot_download
# Download All Required Models using `snapshot_download`
def download_and_extract(repo_id, target_dir):
"""
Downloads a model repo (cached) and copies its contents to a local target directory.
If the target_dir exists, it will be updated (not re-downloaded if cache is present).
"""
print(f"Downloading {repo_id} into cache...")
snapshot_path = snapshot_download(repo_id)
print(f"Copying files to {target_dir}...")
os.makedirs(target_dir, exist_ok=True)
shutil.copytree(snapshot_path, target_dir, dirs_exist_ok=True)
print(f"Done: {repo_id} extracted to {target_dir}")
return target_dir
wan_model_path = download_and_extract("Wan-AI/Wan2.1-I2V-14B-480P", "./weights/Wan2.1-I2V-14B-480P")
wav2vec_path = download_and_extract("TencentGameMate/chinese-wav2vec2-base", "./weights/chinese-wav2vec2-base")
multitalk_path = download_and_extract("MeiGen-AI/MeiGen-MultiTalk", "./weights/MeiGen-MultiTalk")
# Define paths
base_model_dir = "./weights/Wan2.1-I2V-14B-480P"
multitalk_dir = "./weights/MeiGen-MultiTalk"
# File to rename
original_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json")
backup_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json_old")
# Rename the original index file
if os.path.exists(original_index):
os.rename(original_index, backup_index)
print("Renamed original index file to .json_old")
# Copy updated index file from MultiTalk
shutil.copy2(
os.path.join(multitalk_dir, "diffusion_pytorch_model.safetensors.index.json"),
base_model_dir
)
# Copy MultiTalk model weights
shutil.copy2(
os.path.join(multitalk_dir, "multitalk.safetensors"),
base_model_dir
)
print("Copied MultiTalk files into base model directory.")
# Check if CUDA-compatible GPU is available
if torch.cuda.is_available():
# Get current GPU name
gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
print(f"Current GPU: {gpu_name}")
# Enforce GPU requirement
if "A100" not in gpu_name and "L4" not in gpu_name:
raise RuntimeError(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}")
elif "L4" in gpu_name:
print("Warning: L4 is supported, but A100 is recommended for faster inference.")
else:
raise RuntimeError("No CUDA-compatible GPU found. An A100 or L4 GPU is required.")
GPU_TO_VRAM_PARAMS = {
"NVIDIA A100": 11000000000,
"NVIDIA A100-SXM4-40GB": 11000000000,
"NVIDIA A100-SXM4-80GB": 22000000000,
"NVIDIA L4": 5000000000
}
USED_VRAM_PARAMS = GPU_TO_VRAM_PARAMS[gpu_name]
print("Using", USED_VRAM_PARAMS, "for num_persistent_param_in_dit")
def create_temp_input_json(prompt: str, cond_image_path: str, cond_audio_path: str) -> str:
"""
Create a temporary JSON file with the user-provided prompt, image, and audio paths.
Returns the path to the temporary JSON file.
"""
# Structure based on your original JSON format
data = {
"prompt": prompt,
"cond_image": cond_image_path,
"cond_audio": {
"person1": cond_audio_path
}
}
# Create a temp file
temp_json = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8')
json.dump(data, temp_json, indent=4)
temp_json_path = temp_json.name
temp_json.close()
print(f"Temporary input JSON saved to: {temp_json_path}")
return temp_json_path
def infer(prompt, cond_image_path, cond_audio_path):
# Example usage (from user input)
prompt = "A woman sings passionately in a dimly lit studio."
cond_image_path = "examples/single/single1.png" # Assume uploaded via Gradio
cond_audio_path = "examples/single/1.wav" # Assume uploaded via Gradio
input_json_path = create_temp_input_json(prompt, cond_image_path, cond_audio_path)
cmd = [
"python3", "generate_multitalk.py",
"--ckpt_dir", "weights/Wan2.1-I2V-14B-480P",
"--wav2vec_dir", "weights/chinese-wav2vec2-base",
"--input_json", "./examples/single_example_1.json",
"--sample_steps", "20",
"--num_persistent_param_in_dit", str(USED_VRAM_PARAMS),
"--mode", "streaming",
"--use_teacache",
"--save_file", "multi_long_mediumvram_exp"
]
subprocess.run(cmd, check=True)
return "multi_long_mediumvra_exp.mp4"
with gr.Blocks(title="MultiTalk Inference") as demo:
gr.Markdown("## 🎤 MultiTalk Inference Demo")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Text Prompt",
placeholder="Describe the scene...",
lines=4
)
image_input = gr.Image(
type="filepath",
label="Conditioning Image"
)
audio_input = gr.Audio(
type="filepath",
label="Conditioning Audio (.wav)"
)
submit_btn = gr.Button("Generate")
with gr.Column():
output_video = gr.Video(label="Generated Video")
submit_btn.click(
fn=infer,
inputs=[prompt_input, image_input, audio_input],
outputs=output_video
)
demo.launch()