File size: 30,000 Bytes
2d438a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import importlib
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
from PIL import Image

import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm

from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel
from .modules.multitalk_model import WanModel, WanLayerNorm, WanRMSNorm
from .modules.t5 import T5EncoderModel, T5LayerNorm, T5RelativeEmbedding
from .modules.vae import WanVAE, CausalConv3d, RMS_norm, Upsample
from .utils.multitalk_utils import MomentumBuffer, adaptive_projected_guidance
from src.vram_management import AutoWrappedLinear, AutoWrappedModule, enable_vram_management


def torch_gc():
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()


def resize_and_centercrop(cond_image, target_size):
        """
        Resize image or tensor to the target size without padding.
        """

        # Get the original size
        if isinstance(cond_image, torch.Tensor):
            _, orig_h, orig_w = cond_image.shape
        else:
            orig_h, orig_w = cond_image.height, cond_image.width

        target_h, target_w = target_size
        
        # Calculate the scaling factor for resizing
        scale_h = target_h / orig_h
        scale_w = target_w / orig_w
        
        # Compute the final size
        scale = max(scale_h, scale_w)
        final_h = math.ceil(scale * orig_h)
        final_w = math.ceil(scale * orig_w)
        
        # Resize
        if isinstance(cond_image, torch.Tensor):
            if len(cond_image.shape) == 3:
                cond_image = cond_image[None]
            resized_tensor = nn.functional.interpolate(cond_image, size=(final_h, final_w), mode='nearest').contiguous() 
            # crop
            cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size) 
            cropped_tensor = cropped_tensor.squeeze(0)
        else:
            resized_image = cond_image.resize((final_w, final_h), resample=Image.BILINEAR)
            resized_image = np.array(resized_image)
            # tensor and crop
            resized_tensor = torch.from_numpy(resized_image)[None, ...].permute(0, 3, 1, 2).contiguous()
            cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
            cropped_tensor = cropped_tensor[:, :, None, :, :] 

        return cropped_tensor


def timestep_transform(
    t,
    shift=5.0,
    num_timesteps=1000,
):
    t = t / num_timesteps
    # shift the timestep based on ratio
    new_t = shift * t / (1 + (shift - 1) * t)
    new_t = new_t * num_timesteps
    return new_t



class MultiTalkPipeline:

    def __init__(
        self,
        config,
        checkpoint_dir,
        device_id=0,
        rank=0,
        t5_fsdp=False,
        dit_fsdp=False,
        use_usp=False,
        t5_cpu=False,
        init_on_cpu=True,
        num_timesteps=1000,
        use_timestep_transform=True
    ):
        r"""
        Initializes the image-to-video generation model components.

        Args:
            config (EasyDict):
                Object containing model parameters initialized from config.py
            checkpoint_dir (`str`):
                Path to directory containing model checkpoints
            device_id (`int`,  *optional*, defaults to 0):
                Id of target GPU device
            rank (`int`,  *optional*, defaults to 0):
                Process rank for distributed training
            t5_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for T5 model
            dit_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for DiT model
            use_usp (`bool`, *optional*, defaults to False):
                Enable distribution strategy of USP.
            t5_cpu (`bool`, *optional*, defaults to False):
                Whether to place T5 model on CPU. Only works without t5_fsdp.
            init_on_cpu (`bool`, *optional*, defaults to True):
                Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
        """
        self.device = torch.device(f"cuda:{device_id}")
        self.config = config
        self.rank = rank
        self.use_usp = use_usp
        self.t5_cpu = t5_cpu

        self.num_train_timesteps = config.num_train_timesteps
        self.param_dtype = config.param_dtype

        shard_fn = partial(shard_model, device_id=device_id)
        self.text_encoder = T5EncoderModel(
            text_len=config.text_len,
            dtype=config.t5_dtype,
            device=torch.device('cpu'),
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
            shard_fn=shard_fn if t5_fsdp else None,
        )

        self.vae_stride = config.vae_stride
        self.patch_size = config.patch_size
        self.vae = WanVAE(
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
            device=self.device)

        self.clip = CLIPModel(
            dtype=config.clip_dtype,
            device=self.device,
            checkpoint_path=os.path.join(checkpoint_dir,
                                         config.clip_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))

        logging.info(f"Creating WanModel from {checkpoint_dir}")
        self.model = WanModel.from_pretrained(checkpoint_dir)
        self.model.eval().requires_grad_(False)


        if t5_fsdp or dit_fsdp or use_usp:
            init_on_cpu = False
        if use_usp:
            from xfuser.core.distributed import get_sequence_parallel_world_size

            from .distributed.xdit_context_parallel import (
                usp_dit_forward_multitalk,
                usp_attn_forward_multitalk,
                usp_crossattn_multi_forward_multitalk
            )
            for block in self.model.blocks:
                block.self_attn.forward = types.MethodType(
                    usp_attn_forward_multitalk, block.self_attn)
                block.audio_cross_attn.forward = types.MethodType(
                    usp_crossattn_multi_forward_multitalk, block.audio_cross_attn)
            self.model.forward = types.MethodType(usp_dit_forward_multitalk, self.model)
            self.sp_size = get_sequence_parallel_world_size()
        else:
            self.sp_size = 1

        self.model.to(self.param_dtype)

        if dist.is_initialized():
            dist.barrier()
        if dit_fsdp:
            self.model = shard_fn(self.model)
        else:
            if not init_on_cpu:
                self.model.to(self.device)
        
        self.sample_neg_prompt = config.sample_neg_prompt
        self.num_timesteps = num_timesteps
        self.use_timestep_transform = use_timestep_transform

        self.cpu_offload = False
        self.model_names = ["model"]
        self.vram_management = False

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        """
        compatible with diffusers add_noise()
        """
        timesteps = timesteps.float() / self.num_timesteps
        timesteps = timesteps.view(timesteps.shape + (1,) * (len(noise.shape)-1))

        return (1 - timesteps) * original_samples + timesteps * noise

    def enable_vram_management(self, num_persistent_param_in_dit=None):
        dtype = next(iter(self.model.parameters())).dtype
        enable_vram_management(
            self.model,
            module_map={
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv3d: AutoWrappedModule,
                torch.nn.LayerNorm: AutoWrappedModule,
                WanLayerNorm: AutoWrappedModule,
                WanRMSNorm: AutoWrappedModule,
            },
            module_config=dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device=self.device,
                computation_dtype=self.param_dtype,
                computation_device=self.device,
            ),
            max_num_param=num_persistent_param_in_dit,
            overflow_module_config=dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.param_dtype,
                computation_device=self.device,
            ),
        )
        self.enable_cpu_offload()

    def enable_cpu_offload(self):
        self.cpu_offload = True
    
    def load_models_to_device(self, loadmodel_names=[]):
        # only load models to device if cpu_offload is enabled
        if not self.cpu_offload:
            return
        # offload the unneeded models to cpu
        for model_name in self.model_names:
            if model_name not in loadmodel_names:
                model = getattr(self, model_name)

                if not isinstance(model, nn.Module):
                    model = model.model

                if model is not None:
                    if (
                        hasattr(model, "vram_management_enabled")
                        and model.vram_management_enabled
                    ):
                        for module in model.modules():
                            if hasattr(module, "offload"):
                                module.offload()
                    else:
                        model.cpu()
        # load the needed models to device
        for model_name in loadmodel_names:
            model = getattr(self, model_name)
            if not isinstance(model, nn.Module):
                model = model.model
            if model is not None:
                if (
                    hasattr(model, "vram_management_enabled")
                    and model.vram_management_enabled
                ):
                    for module in model.modules():
                        if hasattr(module, "onload"):
                            module.onload()
                else:
                    model.to(self.device)
        # fresh the cuda cache
        torch.cuda.empty_cache()

    def generate(self,
                 input_data,
                 size_buckget='multitalk-480',
                 motion_frame=25,
                 frame_num=81,
                 shift=5.0,
                 sampling_steps=40,
                 text_guide_scale=5.0,
                 audio_guide_scale=4.0,
                 n_prompt="",
                 seed=-1,
                 offload_model=True,
                 max_frames_num=1000,
                 face_scale=0.05,
                 progress=True,
                 extra_args=None):
        r"""
        Generates video frames from input image and text prompt using diffusion process.

        Args:
            frame_num (`int`, *optional*, defaults to 81):
                How many frames to sample from a video. The number should be 4n+1
            shift (`float`, *optional*, defaults to 5.0):
                Noise schedule shift parameter. Affects temporal dynamics
                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
            sampling_steps (`int`, *optional*, defaults to 40):
                Number of diffusion sampling steps. Higher values improve quality but slow generation
            n_prompt (`str`, *optional*, defaults to ""):
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
            seed (`int`, *optional*, defaults to -1):
                Random seed for noise generation. If -1, use random seed
            offload_model (`bool`, *optional*, defaults to True):
                If True, offloads models to CPU during generation to save VRAM
        """

        # init teacache
        if extra_args.use_teacache:
            self.model.teacache_init(
                sample_steps=sampling_steps,
                teacache_thresh=extra_args.teacache_thresh,
                model_scale=extra_args.size,
            )
        else:
            self.model.disable_teacache()

        input_prompt = input_data['prompt']
        cond_file_path = input_data['cond_image']
        cond_image = Image.open(cond_file_path).convert('RGB')
        
        
        # decide a proper size
        bucket_config_module = importlib.import_module("wan.utils.multitalk_utils")
        if size_buckget == 'multitalk-480':
            bucket_config = getattr(bucket_config_module, 'ASPECT_RATIO_627')
        elif size_buckget == 'multitalk-720':
            bucket_config = getattr(bucket_config_module, 'ASPECT_RATIO_960')

        src_h, src_w = cond_image.height, cond_image.width
        ratio = src_h / src_w
        closest_bucket = sorted(list(bucket_config.keys()), key=lambda x: abs(float(x)-ratio))[0]
        target_h, target_w = bucket_config[closest_bucket][0]
        cond_image = resize_and_centercrop(cond_image, (target_h, target_w))

        cond_image = cond_image / 255
        cond_image = (cond_image - 0.5) * 2 # normalization
        cond_image = cond_image.to(self.device)  # 1 C 1 H W


        # read audio embeddings
        audio_embedding_path_1 = input_data['cond_audio']['person1']
        if len(input_data['cond_audio']) == 1:
            HUMAN_NUMBER = 1
            audio_embedding_path_2 = None
        else:
            HUMAN_NUMBER = 2
            audio_embedding_path_2 = input_data['cond_audio']['person2']

        
        full_audio_embs = []        
        audio_embedding_paths = [audio_embedding_path_1, audio_embedding_path_2]
        for human_idx in range(HUMAN_NUMBER):   
            audio_embedding_path = audio_embedding_paths[human_idx]
            if not os.path.exists(audio_embedding_path):
                continue
            full_audio_emb = torch.load(audio_embedding_path)
            if torch.isnan(full_audio_emb).any():
                continue
            if full_audio_emb.shape[0] <= frame_num:
                continue
            full_audio_embs.append(full_audio_emb) 
        
        assert len(full_audio_embs) == HUMAN_NUMBER, f"Aduio file not exists or length not satisfies frame nums."

        # preprocess text embedding
        if n_prompt == "":
            n_prompt = self.sample_neg_prompt
        if not self.t5_cpu:
            self.text_encoder.model.to(self.device)
            context, context_null = self.text_encoder([input_prompt, n_prompt], self.device)
            if offload_model:
                self.text_encoder.model.cpu()
        else:
            context = self.text_encoder([input_prompt], torch.device('cpu'))
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
            context = [t.to(self.device) for t in context]
            context_null = [t.to(self.device) for t in context_null]

        torch_gc()
        # prepare params for video generation
        indices = (torch.arange(2 * 2 + 1) - 2) * 1 
        clip_length = frame_num
        is_first_clip = True
        arrive_last_frame = False
        cur_motion_frames_num = 1
        audio_start_idx = 0
        audio_end_idx = audio_start_idx + clip_length
        gen_video_list = []
        torch_gc()

        # set random seed and init noise
        seed = seed if seed >= 0 else random.randint(0, 99999999)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        np.random.seed(seed)
        random.seed(seed)
        torch.backends.cudnn.deterministic = True

        # start video generation iteratively
        while True:
            audio_embs = []
            # split audio with window size
            for human_idx in range(HUMAN_NUMBER):   
                center_indices = torch.arange(
                    audio_start_idx,
                    audio_end_idx,
                    1,
                ).unsqueeze(
                    1
                ) + indices.unsqueeze(0)
                center_indices = torch.clamp(center_indices, min=0, max=full_audio_embs[human_idx].shape[0]-1)
                audio_emb = full_audio_embs[human_idx][center_indices][None,...].to(self.device)
                audio_embs.append(audio_emb)
            audio_embs = torch.concat(audio_embs, dim=0).to(self.param_dtype)
            torch_gc()

            h, w = cond_image.shape[-2], cond_image.shape[-1]
            lat_h, lat_w = h // self.vae_stride[1], w // self.vae_stride[2]
            max_seq_len = ((frame_num - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
                self.patch_size[1] * self.patch_size[2])
            max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size



            noise = torch.randn(
                16, (frame_num - 1) // 4 + 1,
                lat_h,
                lat_w,
                dtype=torch.float32,
                device=self.device) 

            # get mask
            msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device)
            msk[:, cur_motion_frames_num:] = 0
            msk = torch.concat([
                torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
            ],
                            dim=1)
            msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
            msk = msk.transpose(1, 2).to(self.param_dtype) # B 4 T H W

            with torch.no_grad():
                # get clip embedding
                self.clip.model.to(self.device)
                clip_context = self.clip.visual(cond_image[:, :, -1:, :, :]).to(self.param_dtype) 
                if offload_model:
                    self.clip.model.cpu()
                torch_gc()

                # zero padding and vae encode
                video_frames = torch.zeros(1, cond_image.shape[1], frame_num-cond_image.shape[2], target_h, target_w).to(self.device)
                padding_frames_pixels_values = torch.concat([cond_image, video_frames], dim=2)
                y = self.vae.encode(padding_frames_pixels_values) 
                y = torch.stack(y).to(self.param_dtype) # B C T H W
                cur_motion_frames_latent_num = int(1 + (cur_motion_frames_num-1) // 4)
                latent_motion_frames = y[:, :, :cur_motion_frames_latent_num][0] # C T H W
                y = torch.concat([msk, y], dim=1) # B 4+C T H W
                torch_gc()
            

            # construct human mask
            human_masks = []
            if HUMAN_NUMBER==1:
                background_mask = torch.ones([src_h, src_w])
                human_mask1 = torch.ones([src_h, src_w])
                human_mask2 = torch.ones([src_h, src_w])
                human_masks = [human_mask1, human_mask2, background_mask]
            elif HUMAN_NUMBER==2:
                if 'bbox' in input_data:
                    assert len(input_data['bbox']) == len(input_data['cond_audio']), f"The number of target bbox should be the same with cond_audio"
                    background_mask = torch.zeros([src_h, src_w])
                    for _, person_bbox in input_data['bbox'].items():
                        x_min, y_min, x_max, y_max = person_bbox
                        human_mask = torch.zeros([src_h, src_w])
                        human_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
                        background_mask += human_mask
                        human_masks.append(human_mask)
                else:
                    x_min, x_max = int(src_h * face_scale), int(src_h * (1 - face_scale))
                    background_mask = torch.zeros([src_h, src_w])
                    background_mask = torch.zeros([src_h, src_w])
                    human_mask1 = torch.zeros([src_h, src_w])
                    human_mask2 = torch.zeros([src_h, src_w])
                    src_w = src_w//2
                    lefty_min, lefty_max = int(src_w * face_scale), int(src_w * (1 - face_scale))
                    righty_min, righty_max = int(src_w * face_scale + src_w), int(src_w * (1 - face_scale) + src_w)
                    human_mask1[x_min:x_max, lefty_min:lefty_max] = 1
                    human_mask2[x_min:x_max, righty_min:righty_max] = 1
                    background_mask += human_mask1
                    background_mask += human_mask2
                    human_masks = [human_mask1, human_mask2]
                background_mask = torch.where(background_mask > 0, torch.tensor(0), torch.tensor(1))
                human_masks.append(background_mask)

            ref_target_masks = torch.stack(human_masks, dim=0).to(self.device)
            # resize and centercrop for ref_target_masks 
            ref_target_masks = resize_and_centercrop(ref_target_masks, (target_h, target_w))

            _, _, _,lat_h, lat_w = y.shape
            ref_target_masks = F.interpolate(ref_target_masks.unsqueeze(0), size=(lat_h, lat_w), mode='nearest').squeeze() 
            ref_target_masks = (ref_target_masks > 0) 
            ref_target_masks = ref_target_masks.float().to(self.device)

            torch_gc()

            @contextmanager
            def noop_no_sync():
                yield

            no_sync = getattr(self.model, 'no_sync', noop_no_sync)

            # evaluation mode
            with torch.no_grad(), no_sync():
                
                # prepare timesteps
                timesteps = list(np.linspace(self.num_timesteps, 1, sampling_steps, dtype=np.float32))
                timesteps.append(0.)
                timesteps = [torch.tensor([t], device=self.device) for t in timesteps]
                if self.use_timestep_transform:
                    timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps]
                
                # sample videos
                latent = noise

                # prepare condition and uncondition configs
                arg_c = {
                    'context': [context],
                    'clip_fea': clip_context,
                    'seq_len': max_seq_len,
                    'y': y,
                    'audio': audio_embs,
                    'ref_target_masks': ref_target_masks
                }


                arg_null_text = {
                    'context': [context_null],
                    'clip_fea': clip_context,
                    'seq_len': max_seq_len,
                    'y': y,
                    'audio': audio_embs,
                    'ref_target_masks': ref_target_masks
                }


                arg_null = {
                    'context': [context_null],
                    'clip_fea': clip_context,
                    'seq_len': max_seq_len,
                    'y': y,
                    'audio': torch.zeros_like(audio_embs)[-1:],
                    'ref_target_masks': ref_target_masks
                }

                torch_gc()
                if not self.vram_management:
                    self.model.to(self.device)
                else:
                    self.load_models_to_device(["model"])
                
                # injecting motion frames
                if not is_first_clip:
                    latent_motion_frames = latent_motion_frames.to(latent.dtype).to(self.device)
                    motion_add_noise = torch.randn_like(latent_motion_frames).contiguous()
                    add_latent = self.add_noise(latent_motion_frames, motion_add_noise, timesteps[0])
                    _, T_m, _, _ = add_latent.shape
                    latent[:, :T_m] = add_latent

                # infer with APG
                # refer https://arxiv.org/abs/2410.02416   
                if extra_args.use_apg:  
                    text_momentumbuffer  = MomentumBuffer(extra_args.apg_momentum) 
                    audio_momentumbuffer = MomentumBuffer(extra_args.apg_momentum) 


                progress_wrap = partial(tqdm, total=len(timesteps)-1) if progress else (lambda x: x)
                for i in progress_wrap(range(len(timesteps)-1)):
                    timestep = timesteps[i]
                    latent_model_input = [latent.to(self.device)]

                    # inference with CFG strategy
                    noise_pred_cond = self.model(
                    latent_model_input, t=timestep, **arg_c)[0] 
                    torch_gc()
                    noise_pred_drop_text = self.model(
                        latent_model_input, t=timestep, **arg_null_text)[0] 
                    torch_gc()
                    noise_pred_uncond = self.model(
                        latent_model_input, t=timestep, **arg_null)[0]  
                    torch_gc()

                    if extra_args.use_apg:
                        # correct update direction
                        diff_uncond_text  = noise_pred_cond - noise_pred_drop_text
                        diff_uncond_audio = noise_pred_drop_text - noise_pred_uncond
                        noise_pred = noise_pred_cond + (text_guide_scale - 1) * adaptive_projected_guidance(diff_uncond_text, 
                                                                                                            noise_pred_cond, 
                                                                                                            momentum_buffer=text_momentumbuffer, 
                                                                                                            norm_threshold=extra_args.apg_norm_threshold) \
                               + (audio_guide_scale - 1) * adaptive_projected_guidance(diff_uncond_audio, 
                                                                                        noise_pred_cond, 
                                                                                        momentum_buffer=audio_momentumbuffer, 
                                                                                        norm_threshold=extra_args.apg_norm_threshold)
                    else:
                        # vanilla CFG strategy
                        noise_pred = noise_pred_uncond + text_guide_scale * (
                            noise_pred_cond - noise_pred_drop_text) + \
                            audio_guide_scale * (noise_pred_drop_text - noise_pred_uncond)  
                    noise_pred = -noise_pred  

                    # update latent
                    dt = timesteps[i] - timesteps[i + 1]
                    dt = dt / self.num_timesteps
                    latent = latent + noise_pred * dt[:, None, None, None]

                    # injecting motion frames
                    if not is_first_clip:
                        latent_motion_frames = latent_motion_frames.to(latent.dtype).to(self.device)
                        motion_add_noise = torch.randn_like(latent_motion_frames).contiguous()
                        add_latent = self.add_noise(latent_motion_frames, motion_add_noise, timesteps[i+1])
                        _, T_m, _, _ = add_latent.shape
                        latent[:, :T_m] = add_latent

                    x0 = [latent.to(self.device)] 
                    del latent_model_input, timestep
                
                if offload_model: 
                    if not self.vram_management:
                        self.model.cpu()
                torch_gc()

                videos = self.vae.decode(x0) 
            
            # cache generated samples
            videos = torch.stack(videos).cpu() # B C T H W
            if is_first_clip:
                gen_video_list.append(videos)
            else:
                gen_video_list.append(videos[:, :, cur_motion_frames_num:])

            # decide whether is done
            if arrive_last_frame: break

            # update next condition frames
            is_first_clip = False
            cur_motion_frames_num = motion_frame

            cond_image = videos[:, :, -cur_motion_frames_num:].to(torch.float32).to(self.device)
            audio_start_idx += (frame_num - cur_motion_frames_num)
            audio_end_idx = audio_start_idx + clip_length

            # Repeat audio emb
            if audio_end_idx >= min(max_frames_num, len(full_audio_embs[0])):
                arrive_last_frame = True
                miss_lengths = []
                source_frames = []
                for human_inx in range(HUMAN_NUMBER):
                    source_frame = len(full_audio_embs[human_inx])
                    source_frames.append(source_frame)
                    if audio_end_idx >= len(full_audio_embs[human_inx]):
                        miss_length   = audio_end_idx - len(full_audio_embs[human_inx]) + 3 
                        add_audio_emb = torch.flip(full_audio_embs[human_inx][-1*miss_length:], dims=[0])
                        full_audio_embs[human_inx] = torch.cat([full_audio_embs[human_inx], add_audio_emb], dim=0)
                        miss_lengths.append(miss_length)
                    else:
                        miss_lengths.append(0)
            
            if max_frames_num <= frame_num: break
            
            torch_gc()
            if offload_model:    
                torch.cuda.synchronize()
            if dist.is_initialized():
                dist.barrier()
        
        gen_video_samples = torch.cat(gen_video_list, dim=2)[:, :, :int(max_frames_num)] 
        gen_video_samples = gen_video_samples.to(torch.float32)
        if max_frames_num > frame_num and sum(miss_lengths) > 0:
            # split video frames
            gen_video_samples = gen_video_samples[:, :, :-1*miss_lengths[0]]
        
        if dist.is_initialized():
            dist.barrier()

        del noise, latent
        torch_gc()

        return gen_video_samples[0] if self.rank == 0 else None