File size: 2,240 Bytes
2d438a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from contextlib import contextmanager

import torch

@contextmanager
def init_weights_on_device(device=torch.device("meta"), include_buffers: bool = False):
    old_register_parameter = torch.nn.Module.register_parameter
    if include_buffers:
        old_register_buffer = torch.nn.Module.register_buffer

    def register_empty_parameter(module, name, param):
        old_register_parameter(module, name, param)
        if param is not None:
            param_cls = type(module._parameters[name])
            kwargs = module._parameters[name].__dict__
            kwargs["requires_grad"] = param.requires_grad
            module._parameters[name] = param_cls(
                module._parameters[name].to(device), **kwargs
            )

    def register_empty_buffer(module, name, buffer, persistent=True):
        old_register_buffer(module, name, buffer, persistent=persistent)
        if buffer is not None:
            module._buffers[name] = module._buffers[name].to(device)

    def patch_tensor_constructor(fn):
        def wrapper(*args, **kwargs):
            kwargs["device"] = device
            return fn(*args, **kwargs)

        return wrapper

    if include_buffers:
        tensor_constructors_to_patch = {
            torch_function_name: getattr(torch, torch_function_name)
            for torch_function_name in ["empty", "zeros", "ones", "full"]
        }
    else:
        tensor_constructors_to_patch = {}

    try:
        torch.nn.Module.register_parameter = register_empty_parameter
        if include_buffers:
            torch.nn.Module.register_buffer = register_empty_buffer
        for torch_function_name in tensor_constructors_to_patch.keys():
            setattr(
                torch,
                torch_function_name,
                patch_tensor_constructor(getattr(torch, torch_function_name)),
            )
        yield
    finally:
        torch.nn.Module.register_parameter = old_register_parameter
        if include_buffers:
            torch.nn.Module.register_buffer = old_register_buffer
        for (
            torch_function_name,
            old_torch_function,
        ) in tensor_constructors_to_patch.items():
            setattr(torch, torch_function_name, old_torch_function)