File size: 18,457 Bytes
2d438a0
 
 
 
 
 
 
 
7febdd8
2d438a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7febdd8
 
 
 
 
 
 
2d438a0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import logging
import os
import sys
import json
import warnings
from datetime import datetime
import gc

warnings.filterwarnings('ignore')

import random

import torch
import torch.distributed as dist
from PIL import Image
import subprocess

import wan
from wan.configs import SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
from wan.utils.utils import cache_image, cache_video, str2bool
from wan.utils.multitalk_utils import save_video_ffmpeg

from transformers import Wav2Vec2FeatureExtractor
from src.audio_analysis.wav2vec2 import Wav2Vec2Model

import librosa
import pyloudnorm as pyln
import numpy as np
from einops import rearrange
import soundfile as sf

def _validate_args(args):
    # Basic check
    assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
    assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"

    # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
    if args.sample_steps is None:
        args.sample_steps = 40

    if args.sample_shift is None:
        if args.size == 'multitalk-480':
            args.sample_shift = 7
        elif args.size == 'multitalk-720':
            args.sample_shift = 11
        else:
            raise NotImplementedError(f'Not supported size')

    args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
        0, 99999999)
    # Size check
    assert args.size in SUPPORTED_SIZES[
        args.
        task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"


def _parse_args():
    parser = argparse.ArgumentParser(
        description="Generate a image or video from a text prompt or image using Wan"
    )
    parser.add_argument(
        "--task",
        type=str,
        default="multitalk-14B",
        choices=list(WAN_CONFIGS.keys()),
        help="The task to run.")
    parser.add_argument(
        "--size",
        type=str,
        default="multitalk-480",
        choices=list(SIZE_CONFIGS.keys()),
        help="The buckget size of the generated video. The aspect ratio of the output video will follow that of the input image."
    )
    parser.add_argument(
        "--frame_num",
        type=int,
        default=81,
        help="How many frames to be generated in one clip. The number should be 4n+1"
    )
    parser.add_argument(
        "--ckpt_dir",
        type=str,
        default=None,
        help="The path to the Wan checkpoint directory.")
    parser.add_argument(
        "--wav2vec_dir",
        type=str,
        default=None,
        help="The path to the wav2vec checkpoint directory.")
    parser.add_argument(
        "--offload_model",
        type=str2bool,
        default=None,
        help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
    )
    parser.add_argument(
        "--ulysses_size",
        type=int,
        default=1,
        help="The size of the ulysses parallelism in DiT.")
    parser.add_argument(
        "--ring_size",
        type=int,
        default=1,
        help="The size of the ring attention parallelism in DiT.")
    parser.add_argument(
        "--t5_fsdp",
        action="store_true",
        default=False,
        help="Whether to use FSDP for T5.")
    parser.add_argument(
        "--t5_cpu",
        action="store_true",
        default=False,
        help="Whether to place T5 model on CPU.")
    parser.add_argument(
        "--dit_fsdp",
        action="store_true",
        default=False,
        help="Whether to use FSDP for DiT.")
    parser.add_argument(
        "--save_file",
        type=str,
        default=None,
        help="The file to save the generated image or video to.")
    parser.add_argument(
        "--audio_save_dir",
        type=str,
        default='save_audio',
        help="The path to save the audio embedding.")
    parser.add_argument(
        "--base_seed",
        type=int,
        default=42,
        help="The seed to use for generating the image or video.")
    parser.add_argument(
        "--input_json",
        type=str,
        default='examples.json',
        help="[meta file] The condition path to generate the video.")
    parser.add_argument(
        "--motion_frame",
        type=int,
        default=25,
        help="Driven frame length used in the mode of long video genration.")
    parser.add_argument(
        "--mode",
        type=str,
        default="clip",
        choices=['clip', 'streaming'],
        help="clip: generate one video chunk, streaming: long video generation")
    parser.add_argument(
        "--sample_steps", type=int, default=None, help="The sampling steps.")
    parser.add_argument(
        "--sample_shift",
        type=float,
        default=None,
        help="Sampling shift factor for flow matching schedulers.")
    parser.add_argument(
        "--sample_text_guide_scale",
        type=float,
        default=5.0,
        help="Classifier free guidance scale for text control.")
    parser.add_argument(
        "--sample_audio_guide_scale",
        type=float,
        default=4.0,
        help="Classifier free guidance scale for audio control.")
    parser.add_argument(
        "--num_persistent_param_in_dit",
        type=int,
        default=None,
        required=False,
        help="Maximum parameter quantity retained in video memory, small number to reduce VRAM required",
    )
    parser.add_argument(
        "--use_teacache",
        action="store_true",
        default=False,
        help="Enable teacache for video generation."
    )
    parser.add_argument(
        "--teacache_thresh",
        type=float,
        default=0.2,
        help="Threshold for teacache."
    )
    parser.add_argument(
        "--use_apg",
        action="store_true",
        default=False,
        help="Enable adaptive projected guidance for video generation (APG)."
    )
    parser.add_argument(
        "--apg_momentum",
        type=float,
        default=-0.75,
        help="Momentum used in adaptive projected guidance (APG)."
    )
    parser.add_argument(
        "--apg_norm_threshold",
        type=float,
        default=55,
        help="Norm threshold used in adaptive projected guidance (APG)."
    )

    
    args = parser.parse_args()

    _validate_args(args)

    return args

def custom_init(device, wav2vec):    
    audio_encoder = Wav2Vec2Model.from_pretrained(wav2vec, local_files_only=True).to(device)
    audio_encoder.feature_extractor._freeze_parameters()
    wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec, local_files_only=True)
    return wav2vec_feature_extractor, audio_encoder

def loudness_norm(audio_array, sr=16000, lufs=-23):
    meter = pyln.Meter(sr)
    loudness = meter.integrated_loudness(audio_array)
    if abs(loudness) > 100:
        return audio_array
    normalized_audio = pyln.normalize.loudness(audio_array, loudness, lufs)
    return normalized_audio

def audio_prepare_multi(left_path, right_path, audio_type, sample_rate=16000):

    if not (left_path=='None' or right_path=='None'):
        human_speech_array1 = audio_prepare_single(left_path)
        human_speech_array2 = audio_prepare_single(right_path)
    elif left_path=='None':
        human_speech_array2 = audio_prepare_single(right_path)
        human_speech_array1 = np.zeros(human_speech_array2.shape[0])
    elif right_path=='None':
        human_speech_array1 = audio_prepare_single(left_path)
        human_speech_array2 = np.zeros(human_speech_array1.shape[0])

    if audio_type=='para':
        new_human_speech1 = human_speech_array1
        new_human_speech2 = human_speech_array2
    elif audio_type=='add':
        new_human_speech1 = np.concatenate([human_speech_array1[: human_speech_array1.shape[0]], np.zeros(human_speech_array2.shape[0])]) 
        new_human_speech2 = np.concatenate([np.zeros(human_speech_array1.shape[0]), human_speech_array2[:human_speech_array2.shape[0]]])
    sum_human_speechs = new_human_speech1 + new_human_speech2
    return new_human_speech1, new_human_speech2, sum_human_speechs

def _init_logging(rank):
    # logging
    if rank == 0:
        # set format
        logging.basicConfig(
            level=logging.INFO,
            format="[%(asctime)s] %(levelname)s: %(message)s",
            handlers=[logging.StreamHandler(stream=sys.stdout)])
    else:
        logging.basicConfig(level=logging.ERROR)

def get_embedding(speech_array, wav2vec_feature_extractor, audio_encoder, sr=16000, device='cpu'):
    audio_duration = len(speech_array) / sr
    video_length = audio_duration * 25 # Assume the video fps is 25

    # wav2vec_feature_extractor
    audio_feature = np.squeeze(
        wav2vec_feature_extractor(speech_array, sampling_rate=sr).input_values
    )
    audio_feature = torch.from_numpy(audio_feature).float().to(device=device)
    audio_feature = audio_feature.unsqueeze(0)

    # audio encoder
    with torch.no_grad():
        embeddings = audio_encoder(audio_feature, seq_len=int(video_length), output_hidden_states=True)

    if len(embeddings) == 0:
        print("Fail to extract audio embedding")
        return None

    audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0)
    audio_emb = rearrange(audio_emb, "b s d -> s b d")

    audio_emb = audio_emb.cpu().detach()
    return audio_emb

def extract_audio_from_video(filename, sample_rate):
    raw_audio_path = filename.split('/')[-1].split('.')[0]+'.wav'
    ffmpeg_command = [
        "ffmpeg",
        "-y",
        "-i",
        str(filename),
        "-vn",
        "-acodec",
        "pcm_s16le",
        "-ar",
        "16000",
        "-ac",
        "2",
        str(raw_audio_path),
    ]
    subprocess.run(ffmpeg_command, check=True)
    human_speech_array, sr = librosa.load(raw_audio_path, sr=sample_rate)
    human_speech_array = loudness_norm(human_speech_array, sr)
    os.remove(raw_audio_path)

    return human_speech_array

def audio_prepare_single(audio_path, sample_rate=16000):
    ext = os.path.splitext(audio_path)[1].lower()
    if ext in ['.mp4', '.mov', '.avi', '.mkv']:
        human_speech_array = extract_audio_from_video(audio_path, sample_rate)
        return human_speech_array
    else:
        human_speech_array, sr = librosa.load(audio_path, sr=sample_rate)
        human_speech_array = loudness_norm(human_speech_array, sr)
        return human_speech_array

def generate(args):
    rank = int(os.getenv("RANK", 0))
    world_size = int(os.getenv("WORLD_SIZE", 1))
    local_rank = int(os.getenv("LOCAL_RANK", 0))
    device = local_rank
    _init_logging(rank)

    if args.offload_model is None:
        args.offload_model = False if world_size > 1 else True
        logging.info(
            f"offload_model is not specified, set to {args.offload_model}.")
    if world_size > 1:
        torch.cuda.set_device(local_rank)
        dist.init_process_group(
            backend="nccl",
            init_method="env://",
            rank=rank,
            world_size=world_size)
    else:
        assert not (
            args.t5_fsdp or args.dit_fsdp
        ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
        assert not (
            args.ulysses_size > 1 or args.ring_size > 1
        ), f"context parallel are not supported in non-distributed environments."

    if args.ulysses_size > 1 or args.ring_size > 1:
        assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
        from xfuser.core.distributed import (
            init_distributed_environment,
            initialize_model_parallel,
        )
        init_distributed_environment(
            rank=dist.get_rank(), world_size=dist.get_world_size())

        initialize_model_parallel(
            sequence_parallel_degree=dist.get_world_size(),
            ring_degree=args.ring_size,
            ulysses_degree=args.ulysses_size,
        )

    # TODO: use prompt refine
    # if args.use_prompt_extend:
    #     if args.prompt_extend_method == "dashscope":
    #         prompt_expander = DashScopePromptExpander(
    #             model_name=args.prompt_extend_model,
    #             is_vl="i2v" in args.task or "flf2v" in args.task)
    #     elif args.prompt_extend_method == "local_qwen":
    #         prompt_expander = QwenPromptExpander(
    #             model_name=args.prompt_extend_model,
    #             is_vl="i2v" in args.task,
    #             device=rank)
    #     else:
    #         raise NotImplementedError(
    #             f"Unsupport prompt_extend_method: {args.prompt_extend_method}")

    cfg = WAN_CONFIGS[args.task]
    if args.ulysses_size > 1:
        assert cfg.num_heads % args.ulysses_size == 0, f"`{cfg.num_heads=}` cannot be divided evenly by `{args.ulysses_size=}`."

    logging.info(f"Generation job args: {args}")
    logging.info(f"Generation model config: {cfg}")

    if dist.is_initialized():
        base_seed = [args.base_seed] if rank == 0 else [None]
        dist.broadcast_object_list(base_seed, src=0)
        args.base_seed = base_seed[0]

    assert args.task == "multitalk-14B", 'You should choose multitalk in args.task.'
    

    # TODO: add prompt refine
    # img = Image.open(args.image).convert("RGB")
    # if args.use_prompt_extend:
    #     logging.info("Extending prompt ...")
    #     if rank == 0:
    #         prompt_output = prompt_expander(
    #             args.prompt,
    #             tar_lang=args.prompt_extend_target_lang,
    #             image=img,
    #             seed=args.base_seed)
    #         if prompt_output.status == False:
    #             logging.info(
    #                 f"Extending prompt failed: {prompt_output.message}")
    #             logging.info("Falling back to original prompt.")
    #             input_prompt = args.prompt
    #         else:
    #             input_prompt = prompt_output.prompt
    #         input_prompt = [input_prompt]
    #     else:
    #         input_prompt = [None]
    #     if dist.is_initialized():
    #         dist.broadcast_object_list(input_prompt, src=0)
    #     args.prompt = input_prompt[0]
    #     logging.info(f"Extended prompt: {args.prompt}")

    # read input files

    

    with open(args.input_json, 'r', encoding='utf-8') as f:
        input_data = json.load(f)
        
        wav2vec_feature_extractor, audio_encoder= custom_init('cpu', args.wav2vec_dir)
        args.audio_save_dir = os.path.join(args.audio_save_dir, input_data['cond_image'].split('/')[-1].split('.')[0])
        os.makedirs(args.audio_save_dir,exist_ok=True)
        
        if len(input_data['cond_audio'])==2:
            new_human_speech1, new_human_speech2, sum_human_speechs = audio_prepare_multi(input_data['cond_audio']['person1'], input_data['cond_audio']['person2'], input_data['audio_type'])
            audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder)
            audio_embedding_2 = get_embedding(new_human_speech2, wav2vec_feature_extractor, audio_encoder)
            emb1_path = os.path.join(args.audio_save_dir, '1.pt')
            emb2_path = os.path.join(args.audio_save_dir, '2.pt')
            sum_audio = os.path.join(args.audio_save_dir, 'sum.wav')
            sf.write(sum_audio, sum_human_speechs, 16000)
            torch.save(audio_embedding_1, emb1_path)
            torch.save(audio_embedding_2, emb2_path)
            input_data['cond_audio']['person1'] = emb1_path
            input_data['cond_audio']['person2'] = emb2_path
            input_data['video_audio'] = sum_audio
        elif len(input_data['cond_audio'])==1:
            human_speech = audio_prepare_single(input_data['cond_audio']['person1'])
            audio_embedding = get_embedding(human_speech, wav2vec_feature_extractor, audio_encoder)
            emb_path = os.path.join(args.audio_save_dir, '1.pt')
            sum_audio = os.path.join(args.audio_save_dir, 'sum.wav')
            sf.write(sum_audio, human_speech, 16000)
            torch.save(audio_embedding, emb_path)
            input_data['cond_audio']['person1'] = emb_path
            input_data['video_audio'] = sum_audio

    logging.info("Creating MultiTalk pipeline.")
    wan_i2v = wan.MultiTalkPipeline(
        config=cfg,
        checkpoint_dir=args.ckpt_dir,
        device_id=device,
        rank=rank,
        t5_fsdp=args.t5_fsdp,
        dit_fsdp=args.dit_fsdp, 
        use_usp=(args.ulysses_size > 1 or args.ring_size > 1),  
        t5_cpu=args.t5_cpu
    )

    if args.num_persistent_param_in_dit is not None:
        wan_i2v.vram_management = True
        wan_i2v.enable_vram_management(
            num_persistent_param_in_dit=args.num_persistent_param_in_dit
        )
    
    logging.info("Generating video ...")
    video = wan_i2v.generate(
        input_data,
        size_buckget=args.size,
        motion_frame=args.motion_frame,
        frame_num=args.frame_num,
        shift=args.sample_shift,
        sampling_steps=args.sample_steps,
        text_guide_scale=args.sample_text_guide_scale,
        audio_guide_scale=args.sample_audio_guide_scale,
        seed=args.base_seed,
        offload_model=args.offload_model,
        max_frames_num=args.frame_num if args.mode == 'clip' else 1000,
        extra_args=args,
        )
    

    if rank == 0:
        
        if args.save_file is None:
            formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
            formatted_prompt = input_data['prompt'].replace(" ", "_").replace("/",
                                                                        "_")[:50]
            args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}"
        
        logging.info(f"Saving generated video to {args.save_file}.mp4")
        save_video_ffmpeg(video, args.save_file, [input_data['video_audio']])
        
    logging.info("Finished.")

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()  # optional but useful with multiprocessing
    gc.collect()

    if dist.is_initialized():
        dist.destroy_process_group()

if __name__ == "__main__":
    args = _parse_args()
    generate(args)