Spaces:
Running
on
L40S
Running
on
L40S
File size: 11,869 Bytes
d516aa4 7ba1d45 d7bf027 b4c2b25 d7bf027 f7f6486 7ba1d45 31eb880 da0d3cc 31eb880 7ba1d45 31eb880 7ba1d45 b03d37f 7ba1d45 b03d37f 7ba1d45 98659d3 743662a 7ba1d45 6836325 7ba1d45 6836325 7ba1d45 6836325 d7bf027 a012761 d7bf027 6836325 a012761 6836325 a012761 f7f6486 6836325 a012761 f7f6486 7ba1d45 9a622ff 743662a 7ba1d45 a012761 7ba1d45 f7f6486 bac861b f7f6486 743662a f7f6486 d7bf027 a012761 d7bf027 a012761 7ba1d45 2eced4f 7ba1d45 743662a 78270b1 4f505b7 f266d6a 743662a 7ba1d45 743662a 7ba1d45 6836325 7ba1d45 dc9e379 7ba1d45 743662a 6836325 dc9e379 743662a dc9e379 743662a 7ba1d45 0128af2 78270b1 0128af2 9a622ff 78270b1 9a622ff 78270b1 9a622ff 7ba1d45 d88020f 7ba1d45 f266d6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import torch
import os
import shutil
import subprocess
import gradio as gr
import json
import tempfile
from huggingface_hub import snapshot_download
import soundfile as sf
import tempfile
from datetime import datetime
is_shared_ui = True if "fffiloni/Meigen-MultiTalk" in os.environ['SPACE_ID'] else False
def trim_audio_to_5s_temp(audio_path, sample_rate=16000):
max_duration_sec = 5
audio, sr = sf.read(audio_path)
if sr != sample_rate:
sample_rate = sr
max_samples = max_duration_sec * sample_rate
if len(audio) > max_samples:
audio = audio[:max_samples]
timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f")
base_name = os.path.splitext(os.path.basename(audio_path))[0]
temp_filename = f"{base_name}_trimmed_{timestamp}.wav"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
sf.write(temp_path, audio, samplerate=sample_rate)
return temp_path
num_gpus = torch.cuda.device_count()
print(f"GPU AVAILABLE: {num_gpus}")
# Download All Required Models using `snapshot_download`
# Download Wan2.1-I2V-14B-480P model
wan_model_path = snapshot_download(
repo_id="Wan-AI/Wan2.1-I2V-14B-480P",
local_dir="./weights/Wan2.1-I2V-14B-480P",
#local_dir_use_symlinks=False
)
# Download Chinese wav2vec2 model
wav2vec_path = snapshot_download(
repo_id="TencentGameMate/chinese-wav2vec2-base",
local_dir="./weights/chinese-wav2vec2-base",
#local_dir_use_symlinks=False
)
# Download MeiGen MultiTalk weights
multitalk_path = snapshot_download(
repo_id="MeiGen-AI/MeiGen-MultiTalk",
local_dir="./weights/MeiGen-MultiTalk",
#local_dir_use_symlinks=False
)
# Define paths
base_model_dir = "./weights/Wan2.1-I2V-14B-480P"
multitalk_dir = "./weights/MeiGen-MultiTalk"
# File to rename
original_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json")
backup_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json_old")
# Rename the original index file
if os.path.exists(original_index):
os.rename(original_index, backup_index)
print("Renamed original index file to .json_old")
# Copy updated index file from MultiTalk
shutil.copy2(
os.path.join(multitalk_dir, "diffusion_pytorch_model.safetensors.index.json"),
base_model_dir
)
# Copy MultiTalk model weights
shutil.copy2(
os.path.join(multitalk_dir, "multitalk.safetensors"),
base_model_dir
)
print("Copied MultiTalk files into base model directory.")
# Check if CUDA-compatible GPU is available
if torch.cuda.is_available():
# Get current GPU name
gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
print(f"Current GPU: {gpu_name}")
# Enforce GPU requirement
if "A100" not in gpu_name and "L4" not in gpu_name:
raise RuntimeError(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}")
elif "L4" in gpu_name:
print("Warning: L4 or L40S is supported, but A100 is recommended for faster inference.")
else:
raise RuntimeError("No CUDA-compatible GPU found. An A100, L4 or L40S GPU is required.")
GPU_TO_VRAM_PARAMS = {
"NVIDIA A100": 11000000000,
"NVIDIA A100-SXM4-40GB": 11000000000,
"NVIDIA A100-SXM4-80GB": 22000000000,
"NVIDIA L4": 5000000000,
"NVIDIA L40S": 11000000000
}
USED_VRAM_PARAMS = GPU_TO_VRAM_PARAMS[gpu_name]
print("Using", USED_VRAM_PARAMS, "for num_persistent_param_in_dit")
def create_temp_input_json(prompt: str, cond_image_path: str, cond_audio_path_spk1: str, cond_audio_path_spk2: str) -> str:
"""
Create a temporary JSON file with the user-provided prompt, image, and audio paths.
Returns the path to the temporary JSON file.
"""
# Structure based on your original JSON format
if cond_audio_path_spk2 is None:
data = {
"prompt": prompt,
"cond_image": cond_image_path,
"cond_audio": {
"person1": cond_audio_path_spk1
}
}
else:
data = {
"prompt": prompt,
"cond_image": cond_image_path,
"audio_type": "para",
"cond_audio": {
"person1": cond_audio_path_spk1,
"person2": cond_audio_path_spk2
}
}
# Create a temp file
temp_json = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8')
json.dump(data, temp_json, indent=4)
temp_json_path = temp_json.name
temp_json.close()
print(f"Temporary input JSON saved to: {temp_json_path}")
return temp_json_path
def infer(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2, sample_steps):
timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f")
result_filename = f"meigen_multitalk_result_{sample_steps}_steps_{timestamp}"
temp_files_to_cleanup = []
if is_shared_ui:
trimmed_audio_path_spk1 = trim_audio_to_5s_temp(cond_audio_path_spk1)
if trimmed_audio_path_spk1 != cond_audio_path_spk1:
cond_audio_path_spk1 = trimmed_audio_path_spk1
temp_files_to_cleanup.append(trimmed_audio_path_spk1)
if cond_audio_path_spk2 is not None:
trimmed_audio_path_spk2 = trim_audio_to_5s_temp(cond_audio_path_spk2)
if trimmed_audio_path_spk2 != cond_audio_path_spk2:
cond_audio_path_spk2 = trimmed_audio_path_spk2
temp_files_to_cleanup.append(trimmed_audio_path_spk2)
# Prepare input JSON
input_json_path = create_temp_input_json(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2)
temp_files_to_cleanup.append(input_json_path)
# Base args
common_args = [
"--ckpt_dir", "weights/Wan2.1-I2V-14B-480P",
"--wav2vec_dir", "weights/chinese-wav2vec2-base",
"--input_json", input_json_path,
"--sample_steps", str(sample_steps),
"--mode", "streaming",
"--use_teacache",
"--save_file", result_filename
]
if num_gpus > 1:
cmd = [
"torchrun",
f"--nproc_per_node={num_gpus}",
"--standalone",
"generate_multitalk.py",
#"--num_persistent_param_in_dit", "22000000000", # On 4xL40S
"--dit_fsdp", "--t5_fsdp",
"--ulysses_size", str(num_gpus),
] + common_args
else:
cmd = [
"python3",
"generate_multitalk.py",
"--num_persistent_param_in_dit", str(USED_VRAM_PARAMS),
] + common_args
try:
# Log to file and stream
with open("inference.log", "w") as log_file:
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1
)
for line in process.stdout:
print(line, end="")
log_file.write(line)
process.wait()
if process.returncode != 0:
raise RuntimeError("Inference failed. Check inference.log for details.")
return f"{result_filename}.mp4"
finally:
for f in temp_files_to_cleanup:
try:
if os.path.exists(f):
os.remove(f)
print(f"[INFO] Removed temporary file: {f}")
except Exception as e:
print(f"[WARNING] Could not remove {f}: {e}")
def load_prerendered_examples(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2, sample_steps):
output_video = None
if cond_image_path == "examples/single/single1.png":
output_video = "examples/results/multitalk_single_example_1.mp4"
elif cond_image_path == "examples/multi/3/multi3.png":
output_video = "examples/results/multitalk_multi_example_2.mp4"
return output_video
with gr.Blocks(title="MultiTalk Inference") as demo:
gr.Markdown("## 🎤 Meigen MultiTalk Inference Demo")
gr.Markdown("Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation")
if is_shared_ui:
gr.Markdown("Audio will be trimmed to max 5 seconds on fffiloni's shared UI. Sample steps are limited to 12. Gradio queue size is set to 4. Generating a 5 seconds video will take approximatively 20 minutes. Duplicate to skip the queue and work with longer audio inference. ")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/MeiGen-AI/MultiTalk">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href='https://meigen-ai.github.io/multi-talk/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://huggingface.co/MeiGen-AI/MeiGen-MultiTalk'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<a href='https://arxiv.org/abs/2505.22647'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href="https://huggingface.co/spaces/fffiloni/KDTalker?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Text Prompt",
placeholder="Describe the scene...",
)
image_input = gr.Image(
type="filepath",
label="Conditioning Image"
)
audio_input_spk1 = gr.Audio(
type="filepath",
label="Conditioning Audio for speaker 1(.wav)"
)
audio_input_spk2 = gr.Audio(
type="filepath",
label="Conditioning Audio for speaker 2(.wav) (Optional)"
)
with gr.Accordion("Advanced settings", open=False):
sample_steps = gr.Slider(
label="sample steps",
value=12,
minimum=2,
maximum=25,
step=1,
interactive=False if is_shared_ui else True
)
submit_btn = gr.Button("Generate")
with gr.Column(scale=3):
output_video = gr.Video(label="Generated Video", interactive=False)
gr.Examples(
examples = [
["A woman sings passionately in a dimly lit studio.", "examples/single/single1.png", "examples/single/1.wav", None, 12, "examples/results/multitalk_single_example_1.mp4"],
["In a cozy recording studio, a man and a woman are singing together. The man, with tousled brown hair, stands to the left, wearing a light green button-down shirt. His gaze is directed towards the woman, who is smiling warmly. She, with wavy dark hair, is dressed in a black floral dress and stands to the right, her eyes closed in enjoyment. Between them is a professional microphone, capturing their harmonious voices. The background features wooden panels and various audio equipment, creating an intimate and focused atmosphere. The lighting is soft and warm, highlighting their expressions and the intimate setting. A medium shot captures their interaction closely.", "examples/multi/3/multi3.png", "examples/multi/3/1-man.WAV", "examples/multi/3/1-woman.WAV", 12, "examples/results/multitalk_multi_example_2.mp4"],
],
inputs = [prompt_input, image_input, audio_input_spk1, audio_input_spk2, sample_steps, output_video],
)
submit_btn.click(
fn=infer,
inputs=[prompt_input, image_input, audio_input_spk1, audio_input_spk2, sample_steps],
outputs=output_video
)
demo.queue(max_size=4).launch(ssr_mode=False, show_error=True, show_api=False) |