File size: 11,869 Bytes
d516aa4
 
 
 
 
 
 
7ba1d45
 
d7bf027
 
 
 
 
 
 
 
 
 
 
b4c2b25
d7bf027
 
 
 
 
 
 
 
 
 
 
 
 
f7f6486
 
 
7ba1d45
 
31eb880
 
 
 
 
 
da0d3cc
31eb880
 
 
 
 
 
7ba1d45
31eb880
 
 
 
 
 
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03d37f
7ba1d45
b03d37f
7ba1d45
 
 
 
 
 
98659d3
743662a
7ba1d45
 
 
 
 
 
6836325
7ba1d45
 
 
 
 
6836325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba1d45
 
 
 
 
 
 
 
 
 
 
 
6836325
d7bf027
a012761
 
 
 
d7bf027
6836325
a012761
 
 
 
6836325
 
a012761
 
 
 
f7f6486
6836325
a012761
 
 
f7f6486
7ba1d45
 
9a622ff
743662a
7ba1d45
 
a012761
7ba1d45
 
f7f6486
 
 
 
 
 
bac861b
f7f6486
 
 
 
743662a
 
 
 
 
f7f6486
d7bf027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a012761
d7bf027
a012761
 
 
 
 
 
 
 
7ba1d45
2eced4f
 
 
 
 
 
 
 
 
7ba1d45
 
743662a
78270b1
4f505b7
f266d6a
743662a
 
 
 
 
 
 
 
 
 
 
 
 
7ba1d45
 
743662a
7ba1d45
 
 
 
 
 
 
 
 
 
6836325
 
 
 
 
 
7ba1d45
dc9e379
7ba1d45
 
743662a
 
6836325
dc9e379
743662a
 
 
dc9e379
743662a
 
7ba1d45
 
0128af2
78270b1
0128af2
9a622ff
 
78270b1
 
9a622ff
78270b1
9a622ff
 
7ba1d45
 
d88020f
7ba1d45
 
 
f266d6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
import os
import shutil
import subprocess
import gradio as gr 
import json
import tempfile
from huggingface_hub import snapshot_download

import soundfile as sf
import tempfile
from datetime import datetime

is_shared_ui = True if "fffiloni/Meigen-MultiTalk" in os.environ['SPACE_ID'] else False

def trim_audio_to_5s_temp(audio_path, sample_rate=16000):
    max_duration_sec = 5
    audio, sr = sf.read(audio_path)

    if sr != sample_rate:
        sample_rate = sr

    max_samples = max_duration_sec * sample_rate
    if len(audio) > max_samples:
        audio = audio[:max_samples]

    timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f")
    base_name = os.path.splitext(os.path.basename(audio_path))[0]
    temp_filename = f"{base_name}_trimmed_{timestamp}.wav"
    temp_path = os.path.join(tempfile.gettempdir(), temp_filename)

    sf.write(temp_path, audio, samplerate=sample_rate)
    return temp_path

num_gpus = torch.cuda.device_count()
print(f"GPU AVAILABLE: {num_gpus}")

# Download All Required Models using `snapshot_download`

# Download Wan2.1-I2V-14B-480P model
wan_model_path = snapshot_download(
    repo_id="Wan-AI/Wan2.1-I2V-14B-480P",
    local_dir="./weights/Wan2.1-I2V-14B-480P",
    #local_dir_use_symlinks=False
)

# Download Chinese wav2vec2 model
wav2vec_path = snapshot_download(
    repo_id="TencentGameMate/chinese-wav2vec2-base",
    local_dir="./weights/chinese-wav2vec2-base",
    #local_dir_use_symlinks=False
)

# Download MeiGen MultiTalk weights
multitalk_path = snapshot_download(
    repo_id="MeiGen-AI/MeiGen-MultiTalk",
    local_dir="./weights/MeiGen-MultiTalk",
    #local_dir_use_symlinks=False
)

# Define paths
base_model_dir = "./weights/Wan2.1-I2V-14B-480P"
multitalk_dir = "./weights/MeiGen-MultiTalk"

# File to rename
original_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json")
backup_index = os.path.join(base_model_dir, "diffusion_pytorch_model.safetensors.index.json_old")

# Rename the original index file
if os.path.exists(original_index):
    os.rename(original_index, backup_index)
    print("Renamed original index file to .json_old")

# Copy updated index file from MultiTalk
shutil.copy2(
    os.path.join(multitalk_dir, "diffusion_pytorch_model.safetensors.index.json"),
    base_model_dir
)

# Copy MultiTalk model weights
shutil.copy2(
    os.path.join(multitalk_dir, "multitalk.safetensors"),
    base_model_dir
)

print("Copied MultiTalk files into base model directory.")



# Check if CUDA-compatible GPU is available
if torch.cuda.is_available():
    # Get current GPU name
    gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
    print(f"Current GPU: {gpu_name}")

    # Enforce GPU requirement
    if "A100" not in gpu_name and "L4" not in gpu_name:
        raise RuntimeError(f"This notebook requires an A100 or L4 GPU. Found: {gpu_name}")
    elif "L4" in gpu_name:
        print("Warning: L4 or L40S is supported, but A100 is recommended for faster inference.")
else:
    raise RuntimeError("No CUDA-compatible GPU found. An A100, L4 or L40S GPU is required.")


GPU_TO_VRAM_PARAMS = {
    "NVIDIA A100": 11000000000,
    "NVIDIA A100-SXM4-40GB": 11000000000,
    "NVIDIA A100-SXM4-80GB": 22000000000,
    "NVIDIA L4": 5000000000,
    "NVIDIA L40S": 11000000000
}
USED_VRAM_PARAMS = GPU_TO_VRAM_PARAMS[gpu_name]
print("Using", USED_VRAM_PARAMS, "for num_persistent_param_in_dit")



def create_temp_input_json(prompt: str, cond_image_path: str, cond_audio_path_spk1: str, cond_audio_path_spk2: str) -> str:
    """
    Create a temporary JSON file with the user-provided prompt, image, and audio paths.
    Returns the path to the temporary JSON file.
    """
    # Structure based on your original JSON format
    if cond_audio_path_spk2 is None:
        data = {
            "prompt": prompt,
            "cond_image": cond_image_path,
            "cond_audio": {
                "person1": cond_audio_path_spk1
            }
        }

    else:
        data = {
            "prompt": prompt,
            "cond_image": cond_image_path,
            "audio_type": "para",
            "cond_audio": {
                "person1": cond_audio_path_spk1,
                "person2": cond_audio_path_spk2
            }
        }

    # Create a temp file
    temp_json = tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8')
    json.dump(data, temp_json, indent=4)
    temp_json_path = temp_json.name
    temp_json.close()

    print(f"Temporary input JSON saved to: {temp_json_path}")
    return temp_json_path


def infer(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2, sample_steps):

    timestamp = datetime.now().strftime("%Y%m%d%H%M%S%f")
    result_filename = f"meigen_multitalk_result_{sample_steps}_steps_{timestamp}"
    temp_files_to_cleanup = []
    
    if is_shared_ui:
        trimmed_audio_path_spk1 = trim_audio_to_5s_temp(cond_audio_path_spk1)
        if trimmed_audio_path_spk1 != cond_audio_path_spk1:
            cond_audio_path_spk1 = trimmed_audio_path_spk1
            temp_files_to_cleanup.append(trimmed_audio_path_spk1)

        if cond_audio_path_spk2 is not None:
            trimmed_audio_path_spk2 = trim_audio_to_5s_temp(cond_audio_path_spk2)
            if trimmed_audio_path_spk2 != cond_audio_path_spk2:
                cond_audio_path_spk2 = trimmed_audio_path_spk2
                temp_files_to_cleanup.append(trimmed_audio_path_spk2)

    # Prepare input JSON
    input_json_path = create_temp_input_json(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2)
    temp_files_to_cleanup.append(input_json_path)
    
# Base args
    common_args = [
        "--ckpt_dir", "weights/Wan2.1-I2V-14B-480P",
        "--wav2vec_dir", "weights/chinese-wav2vec2-base",
        "--input_json", input_json_path,
        "--sample_steps", str(sample_steps),
        "--mode", "streaming",
        "--use_teacache",
        "--save_file", result_filename
    ]

    if num_gpus > 1:
        cmd = [
            "torchrun",
            f"--nproc_per_node={num_gpus}",
            "--standalone",
            "generate_multitalk.py",
            #"--num_persistent_param_in_dit", "22000000000", # On 4xL40S
            "--dit_fsdp", "--t5_fsdp",
            "--ulysses_size", str(num_gpus),
        ] + common_args
    else:
        cmd = [
            "python3", 
            "generate_multitalk.py",
            "--num_persistent_param_in_dit", str(USED_VRAM_PARAMS),
        ] + common_args

    try:
        # Log to file and stream
        with open("inference.log", "w") as log_file:
            process = subprocess.Popen(
                cmd,
                stdout=subprocess.PIPE,
                stderr=subprocess.STDOUT,
                text=True,
                bufsize=1
            )
            for line in process.stdout:
                print(line, end="")
                log_file.write(line)
            process.wait()

        if process.returncode != 0:
            raise RuntimeError("Inference failed. Check inference.log for details.")

        return f"{result_filename}.mp4"

    finally:
        for f in temp_files_to_cleanup:
            try:
                if os.path.exists(f):
                    os.remove(f)
                    print(f"[INFO] Removed temporary file: {f}")
            except Exception as e:
                print(f"[WARNING] Could not remove {f}: {e}")  

def load_prerendered_examples(prompt, cond_image_path, cond_audio_path_spk1, cond_audio_path_spk2, sample_steps):
    output_video = None
    
    if cond_image_path == "examples/single/single1.png":
        output_video = "examples/results/multitalk_single_example_1.mp4"
    elif cond_image_path == "examples/multi/3/multi3.png":
        output_video = "examples/results/multitalk_multi_example_2.mp4"

    return output_video

with gr.Blocks(title="MultiTalk Inference") as demo:
    gr.Markdown("## 🎤 Meigen MultiTalk Inference Demo")
    gr.Markdown("Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation")
    if is_shared_ui:
        gr.Markdown("Audio will be trimmed to max 5 seconds on fffiloni's shared UI. Sample steps are limited to 12. Gradio queue size is set to 4. Generating a 5 seconds video will take approximatively 20 minutes. Duplicate to skip the queue and work with longer audio inference. ")
    gr.HTML("""
    <div style="display:flex;column-gap:4px;">
        <a href="https://github.com/MeiGen-AI/MultiTalk">
            <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
        </a>
        <a href='https://meigen-ai.github.io/multi-talk/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
        <a href='https://huggingface.co/MeiGen-AI/MeiGen-MultiTalk'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
        <a href='https://arxiv.org/abs/2505.22647'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
        <a href="https://huggingface.co/spaces/fffiloni/KDTalker?duplicate=true">
            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
        </a>
    </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            prompt_input = gr.Textbox(
                label="Text Prompt",
                placeholder="Describe the scene...",
            )

            image_input = gr.Image(
                type="filepath",
                label="Conditioning Image"
            )

            audio_input_spk1 = gr.Audio(
                type="filepath",
                label="Conditioning Audio for speaker 1(.wav)"
            )

            audio_input_spk2 = gr.Audio(
                type="filepath",
                label="Conditioning Audio for speaker 2(.wav) (Optional)"
            )

            with gr.Accordion("Advanced settings", open=False):
                sample_steps = gr.Slider(
                    label="sample steps",
                    value=12,
                    minimum=2,
                    maximum=25,
                    step=1,
                    interactive=False if is_shared_ui else True
                )

            submit_btn = gr.Button("Generate")

        with gr.Column(scale=3):
            output_video = gr.Video(label="Generated Video", interactive=False)

            gr.Examples(
                examples = [
                    ["A woman sings passionately in a dimly lit studio.", "examples/single/single1.png", "examples/single/1.wav", None, 12, "examples/results/multitalk_single_example_1.mp4"],
                    ["In a cozy recording studio, a man and a woman are singing together. The man, with tousled brown hair, stands to the left, wearing a light green button-down shirt. His gaze is directed towards the woman, who is smiling warmly. She, with wavy dark hair, is dressed in a black floral dress and stands to the right, her eyes closed in enjoyment. Between them is a professional microphone, capturing their harmonious voices. The background features wooden panels and various audio equipment, creating an intimate and focused atmosphere. The lighting is soft and warm, highlighting their expressions and the intimate setting. A medium shot captures their interaction closely.", "examples/multi/3/multi3.png", "examples/multi/3/1-man.WAV", "examples/multi/3/1-woman.WAV", 12, "examples/results/multitalk_multi_example_2.mp4"],
                ],
                inputs = [prompt_input, image_input, audio_input_spk1, audio_input_spk2, sample_steps, output_video],
            )

    submit_btn.click(
        fn=infer,
        inputs=[prompt_input, image_input, audio_input_spk1, audio_input_spk2, sample_steps],
        outputs=output_video
    )

demo.queue(max_size=4).launch(ssr_mode=False, show_error=True, show_api=False)