fdaudens HF Staff commited on
Commit
961b49b
·
verified ·
1 Parent(s): 5a90d0f

Upload rss.xml with huggingface_hub

Browse files
Files changed (1) hide show
  1. rss.xml +11 -1
rss.xml CHANGED
@@ -14,7 +14,17 @@
14
  <itunes:email>florent.daudens@hf.co</itunes:email>
15
  </itunes:owner>
16
  <itunes:image href="https://huggingface.co/spaces/fdaudens/podcast-jobs/resolve/main/images/cover3.png" />
17
- <lastBuildDate>Mon, 02 Jun 2025 14:26:51 +0000</lastBuildDate>
 
 
 
 
 
 
 
 
 
 
18
  <item>
19
  <title>Does RL Truly Unlock New Reasoning Capabilities in Large Language Models?</title>
20
  <description>We explore the limitations of past research and challenge prevailing assumptions about reinforcement learning (RL) in large language models, demonstrating that prolonged RL training can genuinely expand a model's reasoning capabilities and unveil novel solution pathways, not just optimize existing knowledge.
 
14
  <itunes:email>florent.daudens@hf.co</itunes:email>
15
  </itunes:owner>
16
  <itunes:image href="https://huggingface.co/spaces/fdaudens/podcast-jobs/resolve/main/images/cover3.png" />
17
+ <lastBuildDate>Tue, 03 Jun 2025 14:27:21 +0000</lastBuildDate>
18
+ <item>
19
+ <title>High-entropy minority tokens drive effective RLVR for LLM models.</title>
20
+ <description>We're about to dive into the uncharted territory of Reinforcement Learning with Verifiable Rewards (RLVR) and explore how a select group of tokens with high entropy can dramatically improve the reasoning capabilities of Large Language Models. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we'll uncover the crucial role these high-entropy minority tokens play in steering model behavior and discover a novel approach to optimizing RLVR training.
21
+
22
+ &lt;a href="https://huggingface.co/papers/2506.01939"&gt;[Read the paper on Hugging Face]&lt;/a&gt;</description>
23
+ <pubDate>Tue, 03 Jun 2025 14:27:21 +0000</pubDate>
24
+ <enclosure url="https://huggingface.co/spaces/fdaudens/podcast-jobs/resolve/main/podcasts/podcast-2025-06-03.wav" length="8745644" type="audio/wav" />
25
+ <guid>https://huggingface.co/spaces/fdaudens/podcast-jobs/resolve/main/podcasts/podcast-2025-06-03.wav</guid>
26
+ <itunes:explicit>false</itunes:explicit>
27
+ </item>
28
  <item>
29
  <title>Does RL Truly Unlock New Reasoning Capabilities in Large Language Models?</title>
30
  <description>We explore the limitations of past research and challenge prevailing assumptions about reinforcement learning (RL) in large language models, demonstrating that prolonged RL training can genuinely expand a model's reasoning capabilities and unveil novel solution pathways, not just optimize existing knowledge.