Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
나의 첫번째 챗봇 AI
|
3 |
+
A workflow application created with MOUSE Workflow builder.
|
4 |
+
Generated by MOUSE Workflow
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
import gradio as gr
|
10 |
+
import requests
|
11 |
+
|
12 |
+
# Workflow configuration
|
13 |
+
WORKFLOW_DATA = {
|
14 |
+
"nodes": [
|
15 |
+
{
|
16 |
+
"id": "name_input",
|
17 |
+
"type": "textInput",
|
18 |
+
"position": {
|
19 |
+
"x": 100,
|
20 |
+
"y": 100
|
21 |
+
},
|
22 |
+
"data": {
|
23 |
+
"label": "Your Name",
|
24 |
+
"template": {
|
25 |
+
"input_value": {
|
26 |
+
"value": "John"
|
27 |
+
}
|
28 |
+
}
|
29 |
+
}
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"id": "topic_input",
|
33 |
+
"type": "textInput",
|
34 |
+
"position": {
|
35 |
+
"x": 100,
|
36 |
+
"y": 250
|
37 |
+
},
|
38 |
+
"data": {
|
39 |
+
"label": "Topic",
|
40 |
+
"template": {
|
41 |
+
"input_value": {
|
42 |
+
"value": "Python programming"
|
43 |
+
}
|
44 |
+
}
|
45 |
+
}
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"id": "level_input",
|
49 |
+
"type": "textInput",
|
50 |
+
"position": {
|
51 |
+
"x": 100,
|
52 |
+
"y": 400
|
53 |
+
},
|
54 |
+
"data": {
|
55 |
+
"label": "Skill Level",
|
56 |
+
"template": {
|
57 |
+
"input_value": {
|
58 |
+
"value": "beginner"
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"id": "combiner",
|
65 |
+
"type": "textNode",
|
66 |
+
"position": {
|
67 |
+
"x": 350,
|
68 |
+
"y": 250
|
69 |
+
},
|
70 |
+
"data": {
|
71 |
+
"label": "Combine Inputs",
|
72 |
+
"template": {
|
73 |
+
"text": {
|
74 |
+
"value": "Create a personalized learning plan"
|
75 |
+
}
|
76 |
+
}
|
77 |
+
}
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"id": "llm_1",
|
81 |
+
"type": "llmNode",
|
82 |
+
"position": {
|
83 |
+
"x": 600,
|
84 |
+
"y": 250
|
85 |
+
},
|
86 |
+
"data": {
|
87 |
+
"label": "Generate Learning Plan",
|
88 |
+
"template": {
|
89 |
+
"provider": {
|
90 |
+
"value": "VIDraft"
|
91 |
+
},
|
92 |
+
"model": {
|
93 |
+
"value": "Gemma-3-r1984-27B"
|
94 |
+
},
|
95 |
+
"temperature": {
|
96 |
+
"value": 0.7
|
97 |
+
},
|
98 |
+
"system_prompt": {
|
99 |
+
"value": "You are an expert educational consultant. Create personalized learning plans based on the user's name, topic of interest, and skill level."
|
100 |
+
}
|
101 |
+
}
|
102 |
+
}
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"id": "output_1",
|
106 |
+
"type": "ChatOutput",
|
107 |
+
"position": {
|
108 |
+
"x": 900,
|
109 |
+
"y": 250
|
110 |
+
},
|
111 |
+
"data": {
|
112 |
+
"label": "Your Learning Plan"
|
113 |
+
}
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"edges": [
|
117 |
+
{
|
118 |
+
"id": "e1",
|
119 |
+
"source": "name_input",
|
120 |
+
"target": "combiner"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"id": "e2",
|
124 |
+
"source": "topic_input",
|
125 |
+
"target": "combiner"
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"id": "e3",
|
129 |
+
"source": "level_input",
|
130 |
+
"target": "combiner"
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"id": "e4",
|
134 |
+
"source": "combiner",
|
135 |
+
"target": "llm_1"
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"id": "e5",
|
139 |
+
"source": "llm_1",
|
140 |
+
"target": "output_1"
|
141 |
+
}
|
142 |
+
]
|
143 |
+
}
|
144 |
+
|
145 |
+
def execute_workflow(*input_values):
|
146 |
+
"""Execute the workflow with given inputs"""
|
147 |
+
|
148 |
+
# API keys from environment
|
149 |
+
vidraft_token = os.getenv("FRIENDLI_TOKEN")
|
150 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
151 |
+
|
152 |
+
nodes = WORKFLOW_DATA.get("nodes", [])
|
153 |
+
edges = WORKFLOW_DATA.get("edges", [])
|
154 |
+
|
155 |
+
results = {}
|
156 |
+
|
157 |
+
# Get input nodes
|
158 |
+
input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "textInput", "Input", "numberInput"]]
|
159 |
+
|
160 |
+
# Map inputs to node IDs
|
161 |
+
for i, node in enumerate(input_nodes):
|
162 |
+
if i < len(input_values):
|
163 |
+
results[node["id"]] = input_values[i]
|
164 |
+
|
165 |
+
# Process nodes
|
166 |
+
for node in nodes:
|
167 |
+
node_id = node.get("id")
|
168 |
+
node_type = node.get("type", "")
|
169 |
+
node_data = node.get("data", {})
|
170 |
+
template = node_data.get("template", {})
|
171 |
+
|
172 |
+
if node_type == "textNode":
|
173 |
+
# Combine connected inputs
|
174 |
+
base_text = template.get("text", {}).get("value", "")
|
175 |
+
connected_inputs = []
|
176 |
+
|
177 |
+
for edge in edges:
|
178 |
+
if edge.get("target") == node_id:
|
179 |
+
source_id = edge.get("source")
|
180 |
+
if source_id in results:
|
181 |
+
connected_inputs.append(f"{source_id}: {results[source_id]}")
|
182 |
+
|
183 |
+
if connected_inputs:
|
184 |
+
results[node_id] = f"{base_text}\n\nInputs:\n" + "\n".join(connected_inputs)
|
185 |
+
else:
|
186 |
+
results[node_id] = base_text
|
187 |
+
|
188 |
+
elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]:
|
189 |
+
# Get provider and model - VIDraft as default
|
190 |
+
provider = template.get("provider", {}).get("value", "VIDraft")
|
191 |
+
if provider not in ["VIDraft", "OpenAI"]:
|
192 |
+
provider = "VIDraft" # Default to VIDraft
|
193 |
+
temperature = template.get("temperature", {}).get("value", 0.7)
|
194 |
+
system_prompt = template.get("system_prompt", {}).get("value", "")
|
195 |
+
|
196 |
+
# Get input text
|
197 |
+
input_text = ""
|
198 |
+
for edge in edges:
|
199 |
+
if edge.get("target") == node_id:
|
200 |
+
source_id = edge.get("source")
|
201 |
+
if source_id in results:
|
202 |
+
input_text = results[source_id]
|
203 |
+
break
|
204 |
+
|
205 |
+
# Call API
|
206 |
+
if provider == "OpenAI" and openai_key:
|
207 |
+
try:
|
208 |
+
from openai import OpenAI
|
209 |
+
client = OpenAI(api_key=openai_key)
|
210 |
+
|
211 |
+
messages = []
|
212 |
+
if system_prompt:
|
213 |
+
messages.append({"role": "system", "content": system_prompt})
|
214 |
+
messages.append({"role": "user", "content": input_text})
|
215 |
+
|
216 |
+
response = client.chat.completions.create(
|
217 |
+
model="gpt-4.1-mini",
|
218 |
+
messages=messages,
|
219 |
+
temperature=temperature,
|
220 |
+
max_tokens=1000
|
221 |
+
)
|
222 |
+
|
223 |
+
results[node_id] = response.choices[0].message.content
|
224 |
+
except Exception as e:
|
225 |
+
results[node_id] = f"[OpenAI Error: {str(e)}]"
|
226 |
+
|
227 |
+
elif provider == "VIDraft" and vidraft_token:
|
228 |
+
try:
|
229 |
+
headers = {
|
230 |
+
"Authorization": f"Bearer {vidraft_token}",
|
231 |
+
"Content-Type": "application/json"
|
232 |
+
}
|
233 |
+
|
234 |
+
messages = []
|
235 |
+
if system_prompt:
|
236 |
+
messages.append({"role": "system", "content": system_prompt})
|
237 |
+
messages.append({"role": "user", "content": input_text})
|
238 |
+
|
239 |
+
payload = {
|
240 |
+
"model": "dep89a2fld32mcm",
|
241 |
+
"messages": messages,
|
242 |
+
"max_tokens": 16384,
|
243 |
+
"temperature": temperature,
|
244 |
+
"top_p": 0.8,
|
245 |
+
"stream": False
|
246 |
+
}
|
247 |
+
|
248 |
+
response = requests.post(
|
249 |
+
"https://api.friendli.ai/dedicated/v1/chat/completions",
|
250 |
+
headers=headers,
|
251 |
+
json=payload,
|
252 |
+
timeout=30
|
253 |
+
)
|
254 |
+
|
255 |
+
if response.status_code == 200:
|
256 |
+
results[node_id] = response.json()["choices"][0]["message"]["content"]
|
257 |
+
else:
|
258 |
+
results[node_id] = f"[VIDraft Error: {response.status_code}]"
|
259 |
+
except Exception as e:
|
260 |
+
results[node_id] = f"[VIDraft Error: {str(e)}]"
|
261 |
+
else:
|
262 |
+
# Show which API key is missing
|
263 |
+
if provider == "OpenAI":
|
264 |
+
results[node_id] = "[OpenAI API key not found. Please set OPENAI_API_KEY in Space secrets]"
|
265 |
+
elif provider == "VIDraft":
|
266 |
+
results[node_id] = "[VIDraft API key not found. Please set FRIENDLI_TOKEN in Space secrets]"
|
267 |
+
else:
|
268 |
+
results[node_id] = f"[No API key found for {provider}. Using simulated response: {input_text[:50]}...]"
|
269 |
+
|
270 |
+
elif node_type in ["ChatOutput", "textOutput", "Output"]:
|
271 |
+
# Get connected result
|
272 |
+
for edge in edges:
|
273 |
+
if edge.get("target") == node_id:
|
274 |
+
source_id = edge.get("source")
|
275 |
+
if source_id in results:
|
276 |
+
results[node_id] = results[source_id]
|
277 |
+
break
|
278 |
+
|
279 |
+
# Return outputs
|
280 |
+
output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "textOutput", "Output"]]
|
281 |
+
return [results.get(n["id"], "") for n in output_nodes]
|
282 |
+
|
283 |
+
# Build UI
|
284 |
+
with gr.Blocks(title="나의 첫번째 챗봇 AI", theme=gr.themes.Soft()) as demo:
|
285 |
+
gr.Markdown("# 나의 첫번째 챗봇 AI")
|
286 |
+
gr.Markdown("A workflow application created with MOUSE Workflow builder.")
|
287 |
+
|
288 |
+
# API Status Check
|
289 |
+
vidraft_token = os.getenv("FRIENDLI_TOKEN")
|
290 |
+
openai_key = os.getenv("OPENAI_API_KEY")
|
291 |
+
|
292 |
+
with gr.Accordion("🔑 API Status", open=False):
|
293 |
+
if vidraft_token:
|
294 |
+
gr.Markdown("✅ **VIDraft API**: Connected (Gemma-3-r1984-27B)")
|
295 |
+
else:
|
296 |
+
gr.Markdown("❌ **VIDraft API**: Not configured")
|
297 |
+
|
298 |
+
if openai_key:
|
299 |
+
gr.Markdown("✅ **OpenAI API**: Connected (gpt-4.1-mini)")
|
300 |
+
else:
|
301 |
+
gr.Markdown("⚠️ **OpenAI API**: Not configured (optional)")
|
302 |
+
|
303 |
+
if not vidraft_token:
|
304 |
+
gr.Markdown("""
|
305 |
+
**⚠️ Important**: Please add FRIENDLI_TOKEN to Space secrets for the app to work properly.
|
306 |
+
|
307 |
+
Go to: Space settings → Repository secrets → Add secret
|
308 |
+
""")
|
309 |
+
elif not openai_key:
|
310 |
+
gr.Markdown("""
|
311 |
+
**💡 Tip**: The app will work with VIDraft alone. Add OPENAI_API_KEY if you need OpenAI features.
|
312 |
+
""")
|
313 |
+
else:
|
314 |
+
gr.Markdown("**✨ All APIs configured! Your app is fully functional.**")
|
315 |
+
|
316 |
+
# Extract nodes
|
317 |
+
nodes = WORKFLOW_DATA.get("nodes", [])
|
318 |
+
input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "textInput", "Input", "numberInput"]]
|
319 |
+
output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "textOutput", "Output"]]
|
320 |
+
|
321 |
+
# Create inputs
|
322 |
+
inputs = []
|
323 |
+
if input_nodes:
|
324 |
+
gr.Markdown("### 📥 Inputs")
|
325 |
+
for node in input_nodes:
|
326 |
+
label = node.get("data", {}).get("label", node.get("id"))
|
327 |
+
template = node.get("data", {}).get("template", {})
|
328 |
+
default_value = template.get("input_value", {}).get("value", "")
|
329 |
+
|
330 |
+
if node.get("type") == "numberInput":
|
331 |
+
inp = gr.Number(label=label, value=float(default_value) if default_value else 0)
|
332 |
+
else:
|
333 |
+
inp = gr.Textbox(label=label, value=default_value, lines=2)
|
334 |
+
inputs.append(inp)
|
335 |
+
|
336 |
+
# Execute button
|
337 |
+
btn = gr.Button("🚀 Execute Workflow", variant="primary")
|
338 |
+
|
339 |
+
# Create outputs
|
340 |
+
outputs = []
|
341 |
+
if output_nodes:
|
342 |
+
gr.Markdown("### 📤 Outputs")
|
343 |
+
for node in output_nodes:
|
344 |
+
label = node.get("data", {}).get("label", node.get("id"))
|
345 |
+
out = gr.Textbox(label=label, interactive=False, lines=3)
|
346 |
+
outputs.append(out)
|
347 |
+
|
348 |
+
# Connect
|
349 |
+
btn.click(fn=execute_workflow, inputs=inputs, outputs=outputs)
|
350 |
+
|
351 |
+
gr.Markdown("---")
|
352 |
+
gr.Markdown("*Powered by MOUSE Workflow*")
|
353 |
+
|
354 |
+
if __name__ == "__main__":
|
355 |
+
demo.launch()
|