File size: 4,781 Bytes
98c6811 fd102e9 7c06aef 98c6811 8f5ce26 98c6811 8f5ce26 98c6811 7c06aef 98c6811 7c06aef 98c6811 7c06aef 8f5ce26 56adaa2 98c6811 7c06aef fd102e9 4e8cb1a 7c06aef fd102e9 4e8cb1a fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 8f5ce26 fd102e9 4e8cb1a fd102e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import random
from collections import Counter, defaultdict
from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os
from datasets import Dataset, load_dataset
from models import translate_google, get_google_supported_languages
from datasets_.util import _get_dataset_config_names, _load_dataset
slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
slug_truthfulqa_autotranslated = "fair-forward/truthfulqa-autotranslated"
tags_uhura_truthfulqa = {
standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_truthfulqa)
if a.endswith("multiple_choice")
}
# Get available auto-translated languages
try:
tags_truthfulqa_autotranslated = {
standardize_tag(a, macro=True): a for a in _get_dataset_config_names(slug_truthfulqa_autotranslated)
}
except Exception:
tags_truthfulqa_autotranslated = {}
def add_choices(row):
row["choices"] = row["mc1_targets"]["choices"]
row["labels"] = row["mc1_targets"]["labels"]
return row
async def load_truthfulqa(language_bcp_47, nr):
if language_bcp_47 in tags_uhura_truthfulqa.keys():
ds = _load_dataset(
slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
)
ds = ds.map(add_choices)
task = ds["test"][nr]
return "masakhane/uhura-truthfulqa", task, "human"
elif language_bcp_47 in tags_truthfulqa_autotranslated.keys():
# Load from auto-translated dataset (same samples as translation)
ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
test_split = ds["test"] if "test" in ds else ds
task = test_split[nr]
return slug_truthfulqa_autotranslated, task, "machine"
# TODO: add Okapi, TruthfulQA-X @Jonas
else:
return None, None, None
def translate_truthfulqa(languages):
human_translated = [*tags_uhura_truthfulqa.keys()]
untranslated = [
lang
for lang in languages["bcp_47"].values[:150]
if lang not in human_translated and lang in get_google_supported_languages()
]
n_samples = 20
# Set fixed seed for consistent sample selection across all languages
random.seed(42)
slug = "fair-forward/truthfulqa-autotranslated"
for lang in tqdm(untranslated):
# check if already exists on hub
try:
ds_lang = load_dataset(slug, lang)
except (ValueError, Exception):
print(f"Translating {lang}...")
for split in ["train", "test"]:
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split)
samples = []
if split == "train":
samples.extend(ds)
else:
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
for i in range(min(n_samples, len(ds))):
task = ds[i]
samples.append(task)
# Translate questions
questions_tr = [
translate_google(s["question"], "en", lang) for s in samples
]
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
# Translate choices for each sample
all_choices_tr = []
all_labels = []
for s in samples:
# Get choices from mc1_targets
choices = s["mc1_targets"]["choices"]
labels = s["mc1_targets"]["labels"]
# Translate choices
choices_tr = [
translate_google(choice, "en", lang) for choice in choices
]
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
all_choices_tr.append(choices_tr)
all_labels.append(labels)
ds_lang = Dataset.from_dict(
{
"question": questions_tr,
"choices": all_choices_tr,
"labels": all_labels,
}
)
ds_lang.push_to_hub(
slug,
split=split,
config_name=lang,
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
)
ds_lang.to_json(
f"data/translations/truthfulqa/{lang}_{split}.json",
lines=False,
force_ascii=False,
indent=2,
)
|