Spaces:
Running
Running
File size: 12,146 Bytes
1c135fd e3ed394 740235a c7a3d75 740235a e3ed394 c995135 c7a3d75 e3ed394 c7a3d75 e3ed394 1970a9b 81be8d4 10aa0a4 1970a9b c7a3d75 1970a9b e3ed394 1c135fd c7a3d75 1c135fd c995135 1c135fd c995135 e3ed394 1c135fd c995135 c6943ba 1c135fd c995135 1c135fd c995135 5f88392 e3ed394 62ea771 c7a3d75 c995135 c7a3d75 c995135 c7a3d75 c995135 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 81be8d4 c7a3d75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import re
import streamlit as st
import pandas as pd
import altair as alt
# Load CSV file
DATA_FILE = "test_all.csv"
df = pd.read_csv(DATA_FILE)
# Normalize column names
df.columns = df.columns.str.strip()
# Page header
st.title("🇷🇺 Russian Router Ranking (RRR)")
st.markdown("""
This leaderboard evaluates Large Language Models (LLMs) on their ability to perform **text routing and classification
tasks in Russian**. Models are assessed based on their capability to return answers in a **structured output** format
(JSON), which is essential for automation and system integration in real-world applications.
The dataset used is [rrr-benchmark](https://huggingface.co/datasets/evilfreelancer/rrr-benchmark), which focuses on
practical routing tasks across various domains.
Source code and details: [GitHub Repository](https://github.com/EvilFreelancer/rrr-benchmark)
""")
st.markdown("""
<style>
.scrollable-table {
max-height: 600px;
overflow-y: auto;
overflow-x: auto;
border: 1px solid #ddd;
margin-bottom: 25px;
}
.sortable-header {
cursor: pointer;
background-color: #f0f2f6 !important;
color: #262730 !important;
padding: 8px 12px !important;
border: 1px solid #ddd !important;
user-select: none;
position: relative;
}
.sortable-header:hover {
background-color: #e6e9f0 !important;
color: #262730 !important;
}
.sort-indicator {
margin-left: 5px;
font-size: 12px;
color: #666;
}
.tooltip-icon {
margin-left: 5px;
color: #666;
cursor: help;
font-size: 14px;
}
</style>
""", unsafe_allow_html=True)
# Utility function to numerically sort model sizes (e.g., 7b < 13b < 65b)
def model_size_sort_key(size: str):
if not isinstance(size, str):
return float('inf')
match = re.match(r"(\d+(?:\.\d+)?)([mb])", size.lower())
if not match:
return float('inf')
num, unit = match.groups()
multiplier = 1e6 if unit == 'm' else 1e9
return float(num) * multiplier
# Sidebar filters
with st.sidebar:
st.header("Filters")
# Model name filter (case-insensitive sort)
model_name_options = sorted(df["model_name"].dropna().unique(), key=str.lower)
model_name = st.multiselect("Select model:", options=model_name_options)
# Model size filter (numerical sort)
model_size_options = sorted(df["model_size"].dropna().unique(), key=model_size_sort_key)
model_size = st.multiselect("Select size:", options=model_size_options)
# Quantization level filter (default alphabetical sort)
model_quant = st.multiselect("Select quantization:", options=sorted(df["model_quant"].dropna().unique()))
# Function to create model URL from model field
def get_model_url(model_field, model_name):
# Create URL with model name embedded for regex extraction
if model_field.startswith("hf.co/"):
# Remove tag after colon if present (e.g., hf.co/model:tag -> hf.co/model)
if ":" in model_field:
model_field = model_field.split(":")[0]
base_url = f"https://{model_field}"
# Add model name as URL fragment for regex extraction
return f"{base_url}#{model_name}"
else:
base_url = f"https://ollama.com/library/{model_field}"
# Add model name as URL fragment for regex extraction
return f"{base_url}#{model_name}"
# Function to render interactive table
def render_interactive_table(data, split_name):
if data.empty:
st.info(f"No data available for {split_name} split yet.")
return
# Apply sidebar filters
filtered_df = data.copy()
if model_name:
filtered_df = filtered_df[filtered_df["model_name"].isin(model_name)]
if model_size:
filtered_df = filtered_df[filtered_df["model_size"].isin(model_size)]
if model_quant:
filtered_df = filtered_df[filtered_df["model_quant"].isin(model_quant)]
if filtered_df.empty:
st.warning("No data matches the selected filters.")
return
# Prepare display dataframe
display_df = filtered_df.copy()
# Convert accuracy to percentage (multiply by 100)
display_df["accuracy"] = display_df["accuracy"] * 100
# Create numerical size for proper sorting (hidden column)
display_df["size_numeric"] = display_df["model_size"].apply(model_size_sort_key)
# Create model URLs with embedded model names
display_df["Model_URL"] = display_df.apply(lambda row: get_model_url(row["model"], row["model_name"]), axis=1)
# Clean up and select needed columns
display_df = display_df[[
"Model_URL", "model_size", "size_numeric", "model_quant",
"accuracy", "avg_response_time", "avg_token_count"
]].copy()
# Rename columns
display_df = display_df.rename(columns={
"Model_URL": "Model",
"model_size": "Size", # Use original size format (1b, 7b, 16b)
"model_quant": "Quant",
"accuracy": "Accuracy",
"avg_response_time": "Avg Time",
"avg_token_count": "Avg Tokens"
})
# Sort by accuracy by default (descending)
display_df = display_df.sort_values("Accuracy", ascending=False).reset_index(drop=True)
# Column configuration
column_config = {
"Model": st.column_config.LinkColumn(
"Model",
help="Click to open model page",
width="medium",
display_text=r".*#(.*)" # Extract model name after # symbol
),
"Size": st.column_config.TextColumn(
"Size",
help="Model size (parameters count)",
width="small"
),
"size_numeric": None, # Hide this column but keep it for sorting
"Quant": st.column_config.TextColumn(
"Quant",
help="Quantization level",
width="small"
),
"Accuracy": st.column_config.NumberColumn(
"Accuracy (%)",
help="Accuracy score (higher is better)",
format="%.2f",
width="small"
),
"Avg Time": st.column_config.NumberColumn(
"Avg Time (s)",
help="Average response time in seconds (lower is better)",
format="%.3f",
width="small"
),
"Avg Tokens": st.column_config.NumberColumn(
"Avg Tokens",
help="Average number of tokens in response",
format="%.1f",
width="small"
)
}
# Display the table
st.data_editor(
display_df,
column_config=column_config,
hide_index=True,
use_container_width=True,
disabled=True
)
# Function to render averaged scores table
def render_averaged_table():
if "dataset_split" not in df.columns:
st.info("Dataset does not contain 'dataset_split' column.")
return
# Filter out generic split for averaging
non_generic_df = df[df["dataset_split"] != "generic"]
if non_generic_df.empty:
st.info("No non-generic data available for averaging.")
return
# Apply sidebar filters first
filtered_df = non_generic_df.copy()
if model_name:
filtered_df = filtered_df[filtered_df["model_name"].isin(model_name)]
if model_size:
filtered_df = filtered_df[filtered_df["model_size"].isin(model_size)]
if model_quant:
filtered_df = filtered_df[filtered_df["model_quant"].isin(model_quant)]
if filtered_df.empty:
st.warning("No data matches the selected filters.")
return
# Calculate averages grouped by model
avg_df = (
filtered_df
.groupby(["model_name", "model", "model_size", "model_quant"], as_index=False)
.agg({
"accuracy": "mean",
"avg_response_time": "mean",
"avg_token_count": "mean"
})
)
render_interactive_table(avg_df, "Average Scores")
# Add accuracy chart by model and split
st.markdown("### 📊 Accuracy by Model and Number of Routes")
st.markdown("*Shows accuracy performance across different number of routes*")
# Prepare data for chart - group by model_name AND model_size for unique variations
chart_data = (
filtered_df
.groupby(["model_name", "model_size", "dataset_split"], as_index=False)
.agg({"accuracy": "mean"})
)
# Create unique model identifier combining name and size
chart_data["model_variant"] = chart_data["model_name"] + " (" + chart_data["model_size"] + ")"
# Convert accuracy to percentage for display
chart_data["accuracy"] = chart_data["accuracy"] * 100
# Ensure accuracy is within 0-100 range
chart_data["accuracy"] = chart_data["accuracy"].clip(0, 100)
if not chart_data.empty:
# Create pivot table for chart using model_variant as columns
pivot_data = chart_data.pivot(index="dataset_split", columns="model_variant", values="accuracy")
# Reorder index to show logical progression of route complexity
route_order = ["routes_3", "routes_5", "routes_7", "routes_9"]
pivot_data = pivot_data.reindex([split for split in route_order if split in pivot_data.index])
# Rename index to be more readable (X-axis labels)
index_rename = {
"routes_3": "3",
"routes_5": "5",
"routes_7": "7",
"routes_9": "9"
}
pivot_data = pivot_data.rename(index=index_rename)
# Display line chart with fixed Y-axis
# Prepare data for Altair
chart_df = pivot_data.reset_index().melt(id_vars="dataset_split", var_name="model_variant",
value_name="accuracy")
# Create Altair line chart with fixed Y-axis
chart = alt.Chart(chart_df).mark_line(point=True).add_selection(
alt.selection_multi(fields=['model_variant'])
).encode(
x=alt.X('dataset_split:O', title='Number of Routes', sort=['3', '5', '7', '9']),
y=alt.Y('accuracy:Q', title='Accuracy (%)', scale=alt.Scale(domain=[0, 100])),
color=alt.Color('model_variant:N', title='Model (Size)'),
tooltip=['dataset_split:O', 'model_variant:N', 'accuracy:Q']
).properties(
height=400,
title="Accuracy Performance Across Route Complexity"
)
st.altair_chart(chart, use_container_width=True)
else:
st.info("No data available for chart display.")
# Dataset splits configuration
splits_config = {
"average": {
"name": "Average Scores",
"description": "Average metrics for each model across all route datasets (excluding Generic)"
},
"routes_3": {
"name": "3 Routes",
"description": "Synthetic dataset with exactly 3 route options per item (simple complexity)"
},
"routes_5": {
"name": "5 Routes",
"description": "Synthetic dataset with exactly 5 route options per item (medium complexity)"
},
"routes_7": {
"name": "7 Routes",
"description": "Synthetic dataset with exactly 7 route options per item (high complexity)"
},
"routes_9": {
"name": "9 Routes",
"description": "Synthetic dataset with exactly 9 route options per item (maximum complexity)"
},
"generic": {
"name": "Generic",
"description": "Original dataset with variable number of routes per item (2-9 routes)"
}
}
# Build tab names
tab_names = [splits_config[split]["name"] for split in splits_config.keys()]
tabs = st.tabs(tab_names)
# Render each dataset split
for i, (split_key, split_config) in enumerate(splits_config.items()):
with tabs[i]:
st.markdown(f"**{split_config['description']}**")
st.markdown("*Click on column headers to sort the table*")
if split_key == "average":
render_averaged_table()
else:
split_data = df[df["dataset_split"] == split_key] if "dataset_split" in df.columns else pd.DataFrame()
render_interactive_table(split_data, split_config["name"])
|