Test / app.py
epicDev123's picture
Update app.py
f11a992 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the DialoGPT-medium model and tokenizer (renamed to 1111)
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# Function for generating responses (renamed as 1111)
def chat_with_1111(input_text):
# Encode the input text using the tokenizer
input_ids = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
# Generate a response using the model (1111)
chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# Decode and return the response
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# Define the Gradio interface
iface = gr.Interface(
fn=chat_with_1111,
inputs=gr.Textbox(lines=2, placeholder="Ask 1111 a question..."), # Input textbox
outputs="text", # Text output
live=False, # Do not send input live; only on button click
title="Chat with 1111",
description="Click the button to chat with 1111, an AI trained with DialoGPT medium!",
examples=[["Hello!"]], # Optional: example input for user to try out
buttons=[gr.Button("Chat with 1111")] # This adds a button
)
# Launch the interface (This will run on Aifaces when uploaded)
iface.launch()