Spaces:
Running
Running
Create data_utils.py
Browse files- data_utils.py +191 -0
data_utils.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import json
|
3 |
+
import io
|
4 |
+
import tempfile
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
from datetime import datetime
|
8 |
+
from functools import lru_cache
|
9 |
+
from collections import Counter
|
10 |
+
from typing import List, Dict, Optional, Tuple
|
11 |
+
import nltk
|
12 |
+
from nltk.corpus import stopwords
|
13 |
+
|
14 |
+
from config import config
|
15 |
+
from models import handle_errors
|
16 |
+
|
17 |
+
# Initialize NLTK
|
18 |
+
try:
|
19 |
+
nltk.download('stopwords', quiet=True)
|
20 |
+
nltk.download('punkt', quiet=True)
|
21 |
+
STOP_WORDS = set(stopwords.words('english'))
|
22 |
+
except:
|
23 |
+
STOP_WORDS = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
|
24 |
+
|
25 |
+
# Simplified Text Processing
|
26 |
+
class TextProcessor:
|
27 |
+
"""Optimized text processing with multi-language support"""
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
@lru_cache(maxsize=config.CACHE_SIZE)
|
31 |
+
def clean_text(text: str, remove_punctuation: bool = True, remove_numbers: bool = False) -> str:
|
32 |
+
"""Clean text with language awareness"""
|
33 |
+
text = text.strip()
|
34 |
+
|
35 |
+
# Don't clean Chinese text aggressively
|
36 |
+
if re.search(r'[\u4e00-\u9fff]', text):
|
37 |
+
return text
|
38 |
+
|
39 |
+
text = text.lower()
|
40 |
+
|
41 |
+
if remove_numbers:
|
42 |
+
text = re.sub(r'\d+', '', text)
|
43 |
+
|
44 |
+
if remove_punctuation:
|
45 |
+
text = re.sub(r'[^\w\s]', '', text)
|
46 |
+
|
47 |
+
words = text.split()
|
48 |
+
cleaned_words = [w for w in words if w not in STOP_WORDS and len(w) >= config.MIN_WORD_LENGTH]
|
49 |
+
return ' '.join(cleaned_words)
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def parse_batch_input(text: str) -> List[str]:
|
53 |
+
"""Parse batch input from textarea"""
|
54 |
+
lines = text.strip().split('\n')
|
55 |
+
return [line.strip() for line in lines if line.strip()]
|
56 |
+
|
57 |
+
# Enhanced History Manager
|
58 |
+
class HistoryManager:
|
59 |
+
"""Enhanced history management with filtering"""
|
60 |
+
def __init__(self):
|
61 |
+
self._history = []
|
62 |
+
|
63 |
+
def add(self, entry: Dict):
|
64 |
+
"""Add entry with timestamp"""
|
65 |
+
entry['timestamp'] = datetime.now().isoformat()
|
66 |
+
self._history.append(entry)
|
67 |
+
if len(self._history) > config.MAX_HISTORY_SIZE:
|
68 |
+
self._history = self._history[-config.MAX_HISTORY_SIZE:]
|
69 |
+
|
70 |
+
def add_batch(self, entries: List[Dict]):
|
71 |
+
"""Add multiple entries"""
|
72 |
+
for entry in entries:
|
73 |
+
self.add(entry)
|
74 |
+
|
75 |
+
def get_all(self) -> List[Dict]:
|
76 |
+
return self._history.copy()
|
77 |
+
|
78 |
+
def get_recent(self, n: int = 10) -> List[Dict]:
|
79 |
+
return self._history[-n:] if self._history else []
|
80 |
+
|
81 |
+
def filter_by(self, sentiment: str = None, language: str = None,
|
82 |
+
min_confidence: float = None) -> List[Dict]:
|
83 |
+
"""Filter history by criteria"""
|
84 |
+
filtered = self._history
|
85 |
+
|
86 |
+
if sentiment:
|
87 |
+
filtered = [h for h in filtered if h['sentiment'] == sentiment]
|
88 |
+
if language:
|
89 |
+
filtered = [h for h in filtered if h.get('language', 'en') == language]
|
90 |
+
if min_confidence:
|
91 |
+
filtered = [h for h in filtered if h['confidence'] >= min_confidence]
|
92 |
+
|
93 |
+
return filtered
|
94 |
+
|
95 |
+
def clear(self) -> int:
|
96 |
+
count = len(self._history)
|
97 |
+
self._history.clear()
|
98 |
+
return count
|
99 |
+
|
100 |
+
def size(self) -> int:
|
101 |
+
return len(self._history)
|
102 |
+
|
103 |
+
def get_stats(self) -> Dict:
|
104 |
+
"""Get comprehensive statistics"""
|
105 |
+
if not self._history:
|
106 |
+
return {}
|
107 |
+
|
108 |
+
sentiments = [item['sentiment'] for item in self._history]
|
109 |
+
confidences = [item['confidence'] for item in self._history]
|
110 |
+
languages = [item.get('language', 'en') for item in self._history]
|
111 |
+
|
112 |
+
return {
|
113 |
+
'total_analyses': len(self._history),
|
114 |
+
'positive_count': sentiments.count('Positive'),
|
115 |
+
'negative_count': sentiments.count('Negative'),
|
116 |
+
'neutral_count': sentiments.count('Neutral'),
|
117 |
+
'avg_confidence': np.mean(confidences),
|
118 |
+
'max_confidence': np.max(confidences),
|
119 |
+
'min_confidence': np.min(confidences),
|
120 |
+
'languages_detected': len(set(languages)),
|
121 |
+
'most_common_language': Counter(languages).most_common(1)[0][0] if languages else 'en'
|
122 |
+
}
|
123 |
+
|
124 |
+
# Universal Data Handler
|
125 |
+
class DataHandler:
|
126 |
+
"""Enhanced data operations"""
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
@handle_errors(default_return=(None, "Export failed"))
|
130 |
+
def export_data(data: List[Dict], format_type: str) -> Tuple[Optional[str], str]:
|
131 |
+
"""Export data with comprehensive information"""
|
132 |
+
if not data:
|
133 |
+
return None, "No data to export"
|
134 |
+
|
135 |
+
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False,
|
136 |
+
suffix=f'.{format_type}', encoding='utf-8')
|
137 |
+
|
138 |
+
if format_type == 'csv':
|
139 |
+
writer = csv.writer(temp_file)
|
140 |
+
writer.writerow(['Timestamp', 'Text', 'Sentiment', 'Confidence', 'Language',
|
141 |
+
'Pos_Prob', 'Neg_Prob', 'Neu_Prob', 'Word_Count'])
|
142 |
+
for entry in data:
|
143 |
+
writer.writerow([
|
144 |
+
entry.get('timestamp', ''),
|
145 |
+
entry.get('text', ''),
|
146 |
+
entry.get('sentiment', ''),
|
147 |
+
f"{entry.get('confidence', 0):.4f}",
|
148 |
+
entry.get('language', 'en'),
|
149 |
+
f"{entry.get('pos_prob', 0):.4f}",
|
150 |
+
f"{entry.get('neg_prob', 0):.4f}",
|
151 |
+
f"{entry.get('neu_prob', 0):.4f}",
|
152 |
+
entry.get('word_count', 0)
|
153 |
+
])
|
154 |
+
elif format_type == 'json':
|
155 |
+
json.dump(data, temp_file, indent=2, ensure_ascii=False)
|
156 |
+
|
157 |
+
temp_file.close()
|
158 |
+
return temp_file.name, f"Exported {len(data)} entries"
|
159 |
+
|
160 |
+
@staticmethod
|
161 |
+
@handle_errors(default_return="")
|
162 |
+
def process_file(file) -> str:
|
163 |
+
"""Process uploaded files"""
|
164 |
+
if not file:
|
165 |
+
return ""
|
166 |
+
|
167 |
+
content = file.read().decode('utf-8')
|
168 |
+
|
169 |
+
if file.name.endswith('.csv'):
|
170 |
+
csv_file = io.StringIO(content)
|
171 |
+
reader = csv.reader(csv_file)
|
172 |
+
try:
|
173 |
+
next(reader) # Skip header
|
174 |
+
texts = []
|
175 |
+
for row in reader:
|
176 |
+
if row and row[0].strip():
|
177 |
+
text = row[0].strip().strip('"')
|
178 |
+
if text:
|
179 |
+
texts.append(text)
|
180 |
+
return '\n'.join(texts)
|
181 |
+
except:
|
182 |
+
lines = content.strip().split('\n')[1:]
|
183 |
+
texts = []
|
184 |
+
for line in lines:
|
185 |
+
if line.strip():
|
186 |
+
text = line.strip().strip('"')
|
187 |
+
if text:
|
188 |
+
texts.append(text)
|
189 |
+
return '\n'.join(texts)
|
190 |
+
|
191 |
+
return content
|