File size: 23,442 Bytes
d6b5c2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>NeuralForge - CPU LLM Training</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <style>
        .gradient-bg {
            background: linear-gradient(135deg, #1e3a8a 0%, #0ea5e9 100%);
        }
        .progress-bar {
            height: 8px;
            transition: width 0.3s ease;
        }
        .model-card:hover {
            transform: translateY(-5px);
            box-shadow: 0 20px 25px -5px rgba(0, 0, 0, 0.1), 0 10px 10px -5px rgba(0, 0, 0, 0.04);
        }
        .terminal {
            font-family: 'Courier New', monospace;
            height: 300px;
            overflow-y: auto;
        }
        @keyframes pulse {
            0%, 100% {
                opacity: 1;
            }
            50% {
                opacity: 0.5;
            }
        }
        .animate-pulse {
            animation: pulse 2s cubic-bezier(0.4, 0, 0.6, 1) infinite;
        }
    </style>
</head>
<body class="bg-gray-100 min-h-screen">
    <div class="gradient-bg text-white">
        <div class="container mx-auto px-4 py-6">
            <header class="flex justify-between items-center">
                <div class="flex items-center space-x-2">
                    <i class="fas fa-brain text-3xl"></i>
                    <h1 class="text-2xl font-bold">NeuralForge</h1>
                </div>
                <nav class="hidden md:flex space-x-6">
                    <a href="#" class="hover:text-blue-200">Dashboard</a>
                    <a href="#" class="hover:text-blue-200">Models</a>
                    <a href="#" class="hover:text-blue-200">Datasets</a>
                    <a href="#" class="hover:text-blue-200">Training</a>
                    <a href="#" class="hover:text-blue-200">Settings</a>
                </nav>
                <button class="md:hidden text-2xl">
                    <i class="fas fa-bars"></i>
                </button>
            </header>
            
            <div class="mt-12 mb-16 text-center">
                <h2 class="text-4xl font-bold mb-4">CPU-Powered LLM Training</h2>
                <p class="text-xl max-w-2xl mx-auto">Train language models efficiently using your CPU resources with our optimized training pipeline</p>
            </div>
        </div>
    </div>

    <div class="container mx-auto px-4 py-8 -mt-10">
        <div class="bg-white rounded-xl shadow-lg p-6 mb-8">
            <div class="flex flex-col md:flex-row gap-6">
                <div class="md:w-2/3">
                    <h3 class="text-xl font-semibold mb-4">Training Configuration</h3>
                    
                    <div class="grid grid-cols-1 md:grid-cols-2 gap-4 mb-6">
                        <div>
                            <label class="block text-sm font-medium text-gray-700 mb-1">Model Architecture</label>
                            <select class="w-full p-2 border border-gray-300 rounded-md focus:ring-2 focus:ring-blue-500 focus:border-blue-500">
                                <option>GPT-2 Small</option>
                                <option>GPT-2 Medium</option>
                                <option>BERT Base</option>
                                <option>DistilBERT</option>
                                <option>Custom...</option>
                            </select>
                        </div>
                        
                        <div>
                            <label class="block text-sm font-medium text-gray-700 mb-1">Training Dataset</label>
                            <select class="w-full p-2 border border-gray-300 rounded-md focus:ring-2 focus:ring-blue-500 focus:border-blue-500">
                                <option>Wikipedia (English)</option>
                                <option>BookCorpus</option>
                                <option>OpenWebText</option>
                                <option>Custom Dataset</option>
                            </select>
                        </div>
                    </div>
                    
                    <div class="grid grid-cols-1 md:grid-cols-3 gap-4 mb-6">
                        <div>
                            <label class="block text-sm font-medium text-gray-700 mb-1">Batch Size</label>
                            <input type="number" value="8" min="1" max="32" class="w-full p-2 border border-gray-300 rounded-md">
                        </div>
                        
                        <div>
                            <label class="block text-sm font-medium text-gray-700 mb-1">Learning Rate</label>
                            <input type="number" step="0.00001" value="0.0001" class="w-full p-2 border border-gray-300 rounded-md">
                        </div>
                        
                        <div>
                            <label class="block text-sm font-medium text-gray-700 mb-1">Epochs</label>
                            <input type="number" value="3" min="1" max="100" class="w-full p-2 border border-gray-300 rounded-md">
                        </div>
                    </div>
                    
                    <div class="mb-6">
                        <label class="block text-sm font-medium text-gray-700 mb-2">CPU Threads (Max: <span id="maxThreads">8</span>)</label>
                        <input type="range" min="1" max="8" value="4" class="w-full" id="threadSlider">
                        <div class="flex justify-between text-xs text-gray-500">
                            <span>1</span>
                            <span>2</span>
                            <span>3</span>
                            <span>4</span>
                            <span>5</span>
                            <span>6</span>
                            <span>7</span>
                            <span>8</span>
                        </div>
                    </div>
                    
                    <div class="flex space-x-4">
                        <button id="startTraining" class="px-6 py-2 bg-blue-600 text-white rounded-md hover:bg-blue-700 transition flex items-center">
                            <i class="fas fa-play mr-2"></i> Start Training
                        </button>
                        <button class="px-6 py-2 border border-gray-300 rounded-md hover:bg-gray-50 transition flex items-center">
                            <i class="fas fa-save mr-2"></i> Save Config
                        </button>
                        <button id="stopTraining" class="px-6 py-2 border border-red-300 text-red-600 rounded-md hover:bg-red-50 transition flex items-center hidden">
                            <i class="fas fa-stop mr-2"></i> Stop Training
                        </button>
                    </div>
                </div>
                
                <div class="md:w-1/3 bg-gray-50 p-4 rounded-lg">
                    <h3 class="text-lg font-semibold mb-4">System Resources</h3>
                    
                    <div class="mb-4">
                        <div class="flex justify-between mb-1">
                            <span class="text-sm font-medium">CPU Utilization</span>
                            <span id="cpuUsage" class="text-sm">0%</span>
                        </div>
                        <div class="w-full bg-gray-200 rounded-full h-2.5">
                            <div id="cpuBar" class="bg-blue-600 h-2.5 rounded-full" style="width: 0%"></div>
                        </div>
                    </div>
                    
                    <div class="mb-4">
                        <div class="flex justify-between mb-1">
                            <span class="text-sm font-medium">Memory Usage</span>
                            <span id="memUsage" class="text-sm">0 GB / 16 GB</span>
                        </div>
                        <div class="w-full bg-gray-200 rounded-full h-2.5">
                            <div id="memBar" class="bg-green-600 h-2.5 rounded-full" style="width: 0%"></div>
                        </div>
                    </div>
                    
                    <div class="mb-4">
                        <div class="flex justify-between mb-1">
                            <span class="text-sm font-medium">Disk Cache</span>
                            <span id="diskUsage" class="text-sm">0 GB / 50 GB</span>
                        </div>
                        <div class="w-full bg-gray-200 rounded-full h-2.5">
                            <div id="diskBar" class="bg-purple-600 h-2.5 rounded-full" style="width: 0%"></div>
                        </div>
                    </div>
                    
                    <div class="mt-6">
                        <h4 class="text-sm font-semibold mb-2">Estimated Training Time</h4>
                        <div class="bg-white p-3 rounded-md border border-gray-200">
                            <div class="flex items-center">
                                <i class="fas fa-clock text-blue-500 mr-2"></i>
                                <span id="estTime">Calculating...</span>
                            </div>
                        </div>
                    </div>
                </div>
            </div>
        </div>
        
        <div class="grid grid-cols-1 md:grid-cols-2 gap-8 mb-8">
            <div class="bg-white rounded-xl shadow-lg p-6">
                <h3 class="text-xl font-semibold mb-4 flex items-center">
                    <i class="fas fa-terminal mr-2 text-blue-500"></i> Training Log
                </h3>
                <div id="terminal" class="terminal bg-black text-green-400 p-4 rounded-md font-mono text-sm overflow-y-auto">
                    <div>> Welcome to NeuralForge LLM Trainer</div>
                    <div>> System ready for training configuration</div>
                    <div>> CPU: 8 cores detected</div>
                    <div>> RAM: 16GB available</div>
                </div>
            </div>
            
            <div class="bg-white rounded-xl shadow-lg p-6">
                <h3 class="text-xl font-semibold mb-4 flex items-center">
                    <i class="fas fa-chart-line mr-2 text-blue-500"></i> Training Metrics
                </h3>
                <div class="grid grid-cols-2 gap-4 mb-4">
                    <div class="bg-gray-50 p-3 rounded-md">
                        <div class="text-sm text-gray-500">Loss</div>
                        <div id="lossValue" class="text-2xl font-bold">--</div>
                    </div>
                    <div class="bg-gray-50 p-3 rounded-md">
                        <div class="text-sm text-gray-500">Perplexity</div>
                        <div id="perplexityValue" class="text-2xl font-bold">--</div>
                    </div>
                </div>
                <div class="h-48 bg-gray-50 rounded-md flex items-center justify-center">
                    <p class="text-gray-400">Training metrics will appear here</p>
                </div>
            </div>
        </div>
        
        <div class="bg-white rounded-xl shadow-lg p-6 mb-8">
            <h3 class="text-xl font-semibold mb-6">Available Model Architectures</h3>
            <div class="grid grid-cols-1 md:grid-cols-3 gap-6">
                <div class="model-card bg-gray-50 p-5 rounded-lg border border-gray-200 transition duration-300 cursor-pointer hover:border-blue-300">
                    <div class="flex justify-between items-start mb-3">
                        <h4 class="font-semibold">GPT-2 Small</h4>
                        <span class="bg-blue-100 text-blue-800 text-xs px-2 py-1 rounded">Recommended</span>
                    </div>
                    <p class="text-sm text-gray-600 mb-4">117M parameters, good for most tasks</p>
                    <div class="text-xs text-gray-500">
                        <div class="flex justify-between mb-1">
                            <span>CPU RAM Needed:</span>
                            <span>4GB</span>
                        </div>
                        <div class="flex justify-between">
                            <span>Training Time:</span>
                            <span>~12 hours</span>
                        </div>
                    </div>
                </div>
                
                <div class="model-card bg-gray-50 p-5 rounded-lg border border-gray-200 transition duration-300 cursor-pointer hover:border-blue-300">
                    <div class="flex justify-between items-start mb-3">
                        <h4 class="font-semibold">DistilBERT</h4>
                    </div>
                    <p class="text-sm text-gray-600 mb-4">66M parameters, distilled BERT model</p>
                    <div class="text-xs text-gray-500">
                        <div class="flex justify-between mb-1">
                            <span>CPU RAM Needed:</span>
                            <span>3GB</span>
                        </div>
                        <div class="flex justify-between">
                            <span>Training Time:</span>
                            <span>~8 hours</span>
                        </div>
                    </div>
                </div>
                
                <div class="model-card bg-gray-50 p-5 rounded-lg border border-gray-200 transition duration-300 cursor-pointer hover:border-blue-300">
                    <div class="flex justify-between items-start mb-3">
                        <h4 class="font-semibold">TinyLLAMA</h4>
                    </div>
                    <p class="text-sm text-gray-600 mb-4">28M parameters, lightweight option</p>
                    <div class="text-xs text-gray-500">
                        <div class="flex justify-between mb-1">
                            <span>CPU RAM Needed:</span>
                            <span>2GB</span>
                        </div>
                        <div class="flex justify-between">
                            <span>Training Time:</span>
                            <span>~5 hours</span>
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </div>

    <footer class="bg-gray-800 text-white py-8">
        <div class="container mx-auto px-4">
            <div class="flex flex-col md:flex-row justify-between">
                <div class="mb-6 md:mb-0">
                    <h3 class="text-xl font-bold mb-4">NeuralForge</h3>
                    <p class="text-gray-400 max-w-md">Optimized CPU training for language models. No GPU required.</p>
                </div>
                <div class="grid grid-cols-2 md:grid-cols-3 gap-8">
                    <div>
                        <h4 class="text-sm font-semibold uppercase tracking-wider mb-4">Product</h4>
                        <ul class="space-y-2">
                            <li><a href="#" class="text-gray-400 hover:text-white">Features</a></li>
                            <li><a href="#" class="text-gray-400 hover:text-white">Pricing</a></li>
                            <li><a href="#" class="text-gray-400 hover:text-white">Documentation</a></li>
                        </ul>
                    </div>
                    <div>
                        <h4 class="text-sm font-semibold uppercase tracking-wider mb-4">Resources</h4>
                        <ul class="space-y-2">
                            <li><a href="#" class="text-gray-400 hover:text-white">Blog</a></li>
                            <li><a href="#" class="text-gray-400 hover:text-white">Tutorials</a></li>
                            <li><a href="#" class="text-gray-400 hover:text-white">Support</a></li>
                        </ul>
                    </div>
                    <div>
                        <h4 class="text-sm font-semibold uppercase tracking-wider mb-4">Company</h4>
                        <ul class="space-y-2">
                            <li><a href="#" class="text-gray-400 hover:text-white">About</a></li>
                            <li><a href="#" class="text-gray-400 hover:text-white">Careers</a></li>
                            <li><a href="#" class="text-gray-400 hover:text-white">Contact</a></li>
                        </ul>
                    </div>
                </div>
            </div>
            <div class="mt-8 pt-8 border-t border-gray-700 flex flex-col md:flex-row justify-between items-center">
                <p class="text-gray-400 text-sm">© 2023 NeuralForge. All rights reserved.</p>
                <div class="flex space-x-6 mt-4 md:mt-0">
                    <a href="#" class="text-gray-400 hover:text-white"><i class="fab fa-twitter"></i></a>
                    <a href="#" class="text-gray-400 hover:text-white"><i class="fab fa-github"></i></a>
                    <a href="#" class="text-gray-400 hover:text-white"><i class="fab fa-linkedin"></i></a>
                </div>
            </div>
        </div>
    </footer>

    <script>
        // Simulate training process
        let trainingInterval;
        let isTraining = false;
        let epoch = 0;
        let totalEpochs = 3;
        let loss = 0;
        let perplexity = 0;
        
        document.getElementById('startTraining').addEventListener('click', startTraining);
        document.getElementById('stopTraining').addEventListener('click', stopTraining);
        document.getElementById('threadSlider').addEventListener('input', updateThreads);
        
        function updateThreads() {
            const threads = document.getElementById('threadSlider').value;
            document.getElementById('maxThreads').textContent = threads;
            updateEstTime(threads);
        }
        
        function updateEstTime(threads) {
            const baseTime = 12; // hours for GPT-2 Small with 4 threads
            const estTime = (baseTime * 4 / threads).toFixed(1);
            document.getElementById('estTime').textContent = `~${estTime} hours`;
        }
        
        function startTraining() {
            if (isTraining) return;
            
            isTraining = true;
            document.getElementById('startTraining').classList.add('hidden');
            document.getElementById('stopTraining').classList.remove('hidden');
            
            const terminal = document.getElementById('terminal');
            terminal.innerHTML += '<div>> Starting training process...</div>';
            terminal.scrollTop = terminal.scrollHeight;
            
            epoch = 0;
            loss = 4.5;
            perplexity = 120;
            
            // Update metrics
            document.getElementById('lossValue').textContent = loss.toFixed(4);
            document.getElementById('perplexityValue').textContent = Math.round(perplexity);
            
            // Simulate resource usage
            let cpuUsage = 10;
            let memUsage = 2;
            let diskUsage = 5;
            
            trainingInterval = setInterval(() => {
                // Simulate CPU usage
                cpuUsage = Math.min(100, cpuUsage + Math.random() * 10);
                document.getElementById('cpuUsage').textContent = Math.round(cpuUsage) + '%';
                document.getElementById('cpuBar').style.width = cpuUsage + '%';
                
                // Simulate memory usage
                memUsage = Math.min(16, memUsage + Math.random() * 0.5);
                document.getElementById('memUsage').textContent = memUsage.toFixed(1) + ' GB / 16 GB';
                document.getElementById('memBar').style.width = (memUsage / 16 * 100) + '%';
                
                // Simulate disk usage
                diskUsage = Math.min(50, diskUsage + Math.random() * 2);
                document.getElementById('diskUsage').textContent = diskUsage.toFixed(1) + ' GB / 50 GB';
                document.getElementById('diskBar').style.width = (diskUsage / 50 * 100) + '%';
                
                // Update training metrics
                if (Math.random() > 0.7) {
                    loss = Math.max(0.5, loss - Math.random() * 0.3);
                    perplexity = Math.max(10, perplexity - Math.random() * 5);
                    
                    document.getElementById('lossValue').textContent = loss.toFixed(4);
                    document.getElementById('perplexityValue').textContent = Math.round(perplexity);
                    
                    // Add to terminal log
                    if (Math.random() > 0.8) {
                        epoch++;
                        const progress = Math.min(100, Math.round((epoch / totalEpochs) * 100));
                        terminal.innerHTML += `<div>> Epoch ${epoch}/${totalEpochs} - Loss: ${loss.toFixed(4)} - Perplexity: ${Math.round(perplexity)}</div>`;
                        terminal.scrollTop = terminal.scrollHeight;
                        
                        if (epoch >= totalEpochs) {
                            stopTraining();
                            terminal.innerHTML += '<div class="text-green-300">> Training completed successfully!</div>';
                            terminal.scrollTop = terminal.scrollHeight;
                        }
                    }
                }
            }, 1000);
        }
        
        function stopTraining() {
            clearInterval(trainingInterval);
            isTraining = false;
            document.getElementById('startTraining').classList.remove('hidden');
            document.getElementById('stopTraining').classList.add('hidden');
            
            // Reset resource usage
            document.getElementById('cpuUsage').textContent = '0%';
            document.getElementById('cpuBar').style.width = '0%';
            document.getElementById('memUsage').textContent = '0 GB / 16 GB';
            document.getElementById('memBar').style.width = '0%';
            document.getElementById('diskUsage').textContent = '0 GB / 50 GB';
            document.getElementById('diskBar').style.width = '0%';
        }
        
        // Initialize
        updateThreads();
        
        // Model card selection
        document.querySelectorAll('.model-card').forEach(card => {
            card.addEventListener('click', function() {
                document.querySelectorAll('.model-card').forEach(c => {
                    c.classList.remove('border-blue-500', 'bg-blue-50');
                });
                this.classList.add('border-blue-500', 'bg-blue-50');
            });
        });
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=elgarrai/neuralfroge" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>