draft-docker / app.py
eagleswim's picture
Update app.py
c5369d3 verified
raw
history blame
2.06 kB
import gradio as gr
from transformers import AutoTokenizer, AutoProcessor, VisionEncoderDecoderModel, TrOCRProcessor
from vllm import LLM, SamplingParams
from PIL import Image
# Load the language model and tokenizer from Hugging Face
model_name = "facebook/opt-125m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize vLLM with CPU configuration
vllm_model = LLM(model=model_name, tensor_parallel_size=1, device="cpu")
def generate_response(prompt, max_tokens, temperature, top_p):
# Define sampling parameters
sampling_params = SamplingParams(
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Generate text using vLLM (input is the raw string `prompt`)
output = vllm_model.generate(prompt, sampling_params)
# Extract and decode the generated tokens
generated_text = output[0].outputs[0].text
return generated_text
# Gradio UI
with gr.Blocks() as demo:
submit_button.click(
generate_response,
inputs=[prompt_input, max_tokens, temperature, top_p],
outputs=output_text,
)
with gr.Tab("OCR"):
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Upload Image",
type="filepath", # Corrected type
image_mode="RGB",
)
ocr_submit_button = gr.Button("Extract Text")
with gr.Column():
ocr_output = gr.Textbox(
label="Extracted Text",
lines=10,
interactive=False,
)
ocr_submit_button.click(
ocr_image,
inputs=[image_input],
outputs=ocr_output,
)
prompt =gr.Textbox()
max_tokens = gr.Textbox()
temperature = gr.Textbox()
top_p = gr.Textbox()
demo=gr.Interface(generate_response, inputs=[prompt, max_tokens,temperature, top_p], outputs="text")
# Launch the app
demo.launch()