dvilasuero HF Staff commited on
Commit
dee400a
·
verified ·
1 Parent(s): 15197fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -62
app.py CHANGED
@@ -1,64 +1,41 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
  gr.LoginButton()
64
- demo.launch()
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import list_models
3
+
4
+
5
+ def hello(profile: gr.OAuthProfile | None) -> str:
6
+ # ^ expect a gr.OAuthProfile object as input to get the user's profile
7
+ # if the user is not logged in, profile will be None
8
+ if profile is None:
9
+ return "I don't know you."
10
+ return f"Hello {profile.name}"
11
+
12
+
13
+ def list_private_models(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
14
+ # ^ expect a gr.OAuthToken object as input to get the user's token
15
+ # if the user is not logged in, oauth_token will be None
16
+ if oauth_token is None:
17
+ return "Please log in to list private models."
18
+ models = [
19
+ f"{model.id} ({'private' if model.private else 'public'})"
20
+ for model in list_models(author=profile.username, token=oauth_token.token)
21
+ ]
22
+ return "Models:\n\n" + "\n - ".join(models) + "."
23
+
24
+
25
+ with gr.Blocks() as demo:
26
+ gr.Markdown(
27
+ "# Gradio OAuth Space"
28
+ "\n\nThis Space is a demo for the **Sign in with Hugging Face** feature. "
29
+ "Duplicate this Space to get started."
30
+ "\n\nFor more details, check out:"
31
+ "\n- https://www.gradio.app/guides/sharing-your-app#o-auth-login-via-hugging-face"
32
+ "\n- https://huggingface.co/docs/hub/spaces-oauth"
33
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  gr.LoginButton()
35
+ # ^ add a login button to the Space
36
+ m1 = gr.Markdown()
37
+ m2 = gr.Markdown()
38
+ demo.load(hello, inputs=None, outputs=m1)
39
+ demo.load(list_private_models, inputs=None, outputs=m2)
40
+
41
+ demo.launch()