ductincao commited on
Commit
160e09c
·
verified ·
1 Parent(s): de18b34

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +19 -6
main.py CHANGED
@@ -1,5 +1,6 @@
1
  import os
2
  os.environ["TRANSFORMERS_CACHE"] = "/tmp"
 
3
  from fastapi import FastAPI
4
  from pydantic import BaseModel
5
  from transformers import PegasusTokenizer, PegasusForConditionalGeneration
@@ -7,32 +8,44 @@ import torch
7
 
8
  app = FastAPI()
9
 
10
- # Load hình
11
  model_name = "google/pegasus-cnn_dailymail"
12
  tokenizer = PegasusTokenizer.from_pretrained(model_name)
13
  model = PegasusForConditionalGeneration.from_pretrained(model_name)
 
 
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  model = model.to(device)
16
 
17
- # Schema input
18
  class InputText(BaseModel):
19
  text: str
20
 
21
- # Hàm tóm tắt
22
  def summarize(text: str) -> str:
 
23
  inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
 
 
 
 
 
 
24
  inputs = {k: v.to(device) for k, v in inputs.items()}
 
 
25
  summary_ids = model.generate(
26
  inputs["input_ids"],
27
- max_length=150,
28
- min_length=60,
29
  num_beams=4,
30
  no_repeat_ngram_size=3,
31
  early_stopping=True
32
  )
 
33
  return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
34
 
35
- # Route API
36
  @app.post("/summarize")
37
  def summarize_api(input: InputText):
38
  return {"summary": summarize(input.text)}
 
1
  import os
2
  os.environ["TRANSFORMERS_CACHE"] = "/tmp"
3
+
4
  from fastapi import FastAPI
5
  from pydantic import BaseModel
6
  from transformers import PegasusTokenizer, PegasusForConditionalGeneration
 
8
 
9
  app = FastAPI()
10
 
11
+ # Load model và tokenizer
12
  model_name = "google/pegasus-cnn_dailymail"
13
  tokenizer = PegasusTokenizer.from_pretrained(model_name)
14
  model = PegasusForConditionalGeneration.from_pretrained(model_name)
15
+
16
+ # Dùng GPU nếu có
17
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
  model = model.to(device)
19
 
20
+ # Định nghĩa input schema
21
  class InputText(BaseModel):
22
  text: str
23
 
24
+ # Hàm tóm tắt tự động điều chỉnh độ dài theo số token
25
  def summarize(text: str) -> str:
26
+ # Tokenize input text
27
  inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
28
+ input_length = inputs["input_ids"].shape[1]
29
+
30
+ # Xác định độ dài summary theo tỷ lệ input
31
+ summary_max_len = max(30, int(input_length * 0.2)) # tối đa khoảng 20% số token
32
+ summary_min_len = max(15, int(summary_max_len * 0.6)) # tối thiểu khoảng 60% max
33
+
34
  inputs = {k: v.to(device) for k, v in inputs.items()}
35
+
36
+ # Sinh summary
37
  summary_ids = model.generate(
38
  inputs["input_ids"],
39
+ max_length=summary_max_len,
40
+ min_length=summary_min_len,
41
  num_beams=4,
42
  no_repeat_ngram_size=3,
43
  early_stopping=True
44
  )
45
+
46
  return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
47
 
48
+ # API route
49
  @app.post("/summarize")
50
  def summarize_api(input: InputText):
51
  return {"summary": summarize(input.text)}