# api/index.py import os import logging import time from datetime import datetime, timedelta from datetime import date as datetime_date from typing import List, Dict, Any, Optional, AsyncGenerator import asyncio from contextlib import asynccontextmanager import yaml import importlib.metadata import pytz from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends, Security from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from pydantic import BaseModel, Field from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession, async_sessionmaker from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column from sqlalchemy import String, Integer, DateTime, select, delete, Float, Index from sqlalchemy.types import Date as SQLAlchemyDate from dotenv import load_dotenv, find_dotenv from sqlalchemy.pool import NullPool import requests import pandas as pd from io import StringIO import ssl import certifi import aiohttp import platform import yfinance as yf # --- Favicon/Static imports --- import os from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse from fastapi.responses import JSONResponse # --- MODELS --- class Base(DeclarativeBase): pass class Ticker(Base): __tablename__ = "tickers" ticker: Mapped[str] = mapped_column(String(10), primary_key=True) name: Mapped[str] = mapped_column(String(255), nullable=False) sector: Mapped[Optional[str]] = mapped_column(String(128), nullable=True) subindustry: Mapped[Optional[str]] = mapped_column(String(128), nullable=True) is_sp500: Mapped[int] = mapped_column(Integer, default=0) is_nasdaq100: Mapped[int] = mapped_column(Integer, default=0) last_updated: Mapped[datetime] = mapped_column(DateTime) class TickerData(Base): __tablename__ = "ticker_data" id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True) ticker: Mapped[str] = mapped_column(String(10), nullable=False) date: Mapped[datetime_date] = mapped_column(SQLAlchemyDate, nullable=False) open: Mapped[float] = mapped_column(Float, nullable=False) high: Mapped[float] = mapped_column(Float, nullable=False) low: Mapped[float] = mapped_column(Float, nullable=False) close: Mapped[float] = mapped_column(Float, nullable=False) volume: Mapped[int] = mapped_column(Integer, nullable=False) created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False) __table_args__ = ( Index('idx_ticker_date', 'ticker', 'date', unique=True), Index('idx_ticker', 'ticker'), Index('idx_date', 'date'), ) # --- PYDANTIC MODELS --- class TickerResponse(BaseModel): ticker: str name: str sector: Optional[str] subindustry: Optional[str] is_sp500: bool is_nasdaq100: bool last_updated: datetime class UpdateTickersRequest(BaseModel): force_refresh: bool = Field(default=False, description="Force refresh even if data is recent") class UpdateTickersResponse(BaseModel): success: bool message: str total_tickers: int sp500_count: int nasdaq100_count: int updated_at: datetime class TaskStatus(BaseModel): task_id: str status: str # pending, running, completed, failed message: Optional[str] = None result: Optional[Dict[str, Any]] = None created_at: datetime class TickerDataResponse(BaseModel): ticker: str date: datetime_date open: float high: float low: float close: float volume: int created_at: datetime class DownloadDataRequest(BaseModel): tickers: Optional[List[str]] = Field(default=None, description="Specific tickers to download. If not provided, downloads all available tickers") force_refresh: bool = Field(default=False, description="Force refresh even if data exists") class DownloadDataResponse(BaseModel): success: bool message: str tickers_processed: int records_created: int records_updated: int date_range: Dict[str, str] # start_date, end_date updated_at: datetime # --- AUTHENTICATION --- security = HTTPBearer() async def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)): """ Verify API key from Authorization header. Expected format: Authorization: Bearer """ api_key = os.getenv("API_KEY") if not api_key: raise HTTPException( status_code=500, detail="API key not configured on server" ) if credentials.credentials != api_key: raise HTTPException( status_code=401, detail="Invalid API key" ) return credentials.credentials # --- CONFIGURATION --- class Config: def __init__(self): load_dotenv(find_dotenv()) self.config = self._load_yaml_config() self._setup_logging() def _load_yaml_config(self, config_path='config.yaml'): try: with open(config_path, 'r') as f: return yaml.safe_load(f) except FileNotFoundError: logging.warning(f"Config file '{config_path}' not found. Using defaults.") return self._get_default_config() def _get_default_config(self): return { 'logging': {'level': 'INFO', 'log_file': 'data_cache/api.log'}, 'data_sources': { 'sp500': { 'url': 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies', 'ticker_column': 'Symbol', 'name_column': 'Security' }, 'nasdaq100': { 'url': 'https://en.wikipedia.org/wiki/Nasdaq-100', 'ticker_column': 'Ticker', 'name_column': 'Company' } }, 'database': {'pool_size': 5, 'max_overflow': 10} } def _setup_logging(self): log_config = self.config.get('logging', {}) log_file = log_config.get('log_file', 'data_cache/api.log') prod_mode = os.getenv("PROD", "False") == "True" handlers = [logging.StreamHandler()] if not prod_mode: os.makedirs(os.path.dirname(log_file), exist_ok=True) handlers.insert(0, logging.FileHandler(log_file)) logging.basicConfig( level=getattr(logging, log_config.get('level', 'INFO').upper()), format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', handlers=handlers, datefmt='%Y-%m-%d %H:%M:%S' ) @property def database_url(self) -> str: user = os.getenv("MYSQL_USER") password = os.getenv("MYSQL_PASSWORD") host = os.getenv("MYSQL_HOST") port = os.getenv("MYSQL_PORT") db = os.getenv("MYSQL_DB") if not all([user, password]): raise ValueError("MySQL credentials not found in environment variables") return f"mysql+aiomysql://{user}:{password}@{host}:{port}/{db}" # --- SERVICES --- class TickerService: def __init__(self, config: Config): self.config = config self.logger = logging.getLogger(__name__) async def get_tickers_from_wikipedia( self, url: str, ticker_column: str, name_column: str, sector_column: Optional[str] = None, subindustry_column: Optional[str] = None ) -> List[tuple[str, str, Optional[str], Optional[str]]]: """Async version fetching ticker, name, sector, and subindustry from Wikipedia.""" try: ssl_context = ssl.create_default_context(cafile=certifi.where()) connector = aiohttp.TCPConnector(ssl=ssl_context) async with aiohttp.ClientSession(connector=connector) as session: headers = {'User-Agent': 'Mozilla/5.0 (compatible; MarketDataAPI/1.0)'} async with session.get(url, headers=headers) as response: response.raise_for_status() html_content = await response.text() tables = pd.read_html(StringIO(html_content)) columns_needed = [ticker_column, name_column] if sector_column: columns_needed.append(sector_column) if subindustry_column: columns_needed.append(subindustry_column) df = next((table for table in tables if all(col in table.columns for col in columns_needed)), None) if df is None: self.logger.error(f"Could not find columns {columns_needed} on {url}") return [] entries = df[columns_needed].dropna(subset=[ticker_column]) self.logger.info(f"Fetched {len(entries)} rows from {url}") results: List[tuple[str, str, Optional[str], Optional[str]]] = [] for _, row in entries.iterrows(): ticker = str(row[ticker_column]).strip() name = str(row[name_column]).strip() sector = str(row[sector_column]).strip() if sector_column and sector_column in row and pd.notna(row[sector_column]) else None subindustry = str(row[subindustry_column]).strip() if subindustry_column and subindustry_column in row and pd.notna(row[subindustry_column]) else None results.append((ticker, name, sector, subindustry)) return results except Exception as e: self.logger.error(f"Failed to fetch tickers and names from {url}: {e}") return [] async def get_sp500_tickers(self) -> List[tuple[str, str, Optional[str], Optional[str]]]: cfg = self.config.config.get('data_sources', {}).get('sp500', {}) return await self.get_tickers_from_wikipedia( cfg.get('url'), cfg.get('ticker_column'), cfg.get('name_column'), cfg.get('sector_column'), cfg.get('subindustry_column') ) async def get_nasdaq100_tickers(self) -> List[tuple[str, str, Optional[str], Optional[str]]]: cfg = self.config.config.get('data_sources', {}).get('nasdaq100', {}) return await self.get_tickers_from_wikipedia( cfg.get('url'), cfg.get('ticker_column'), cfg.get('name_column'), cfg.get('sector_column'), cfg.get('subindustry_column') ) async def update_tickers_in_db(self, session: AsyncSession, force_refresh: bool = False) -> Dict[str, Any]: """ Updates tickers table with latest data from Wikipedia sources, unless data is less than 1 day old (unless force_refresh). """ try: # Check if tickers were updated in the last 24h now = datetime.now(pytz.UTC) result = await session.execute(select(Ticker.last_updated).order_by(Ticker.last_updated.desc()).limit(1)) last = result.scalar() if last and not force_refresh: # Ensure 'last' is timezone aware if last.tzinfo is None: last = pytz.UTC.localize(last) delta = now - last if delta.total_seconds() < 86400: self.logger.info(f"Tickers not updated: last update {last.isoformat()} < 1 day ago.") from sqlalchemy import func total_tickers = await session.scalar(select(func.count()).select_from(Ticker)) sp500_count = await session.scalar(select(func.count()).select_from(Ticker).where(Ticker.is_sp500 == 1)) nasdaq100_count = await session.scalar(select(func.count()).select_from(Ticker).where(Ticker.is_nasdaq100 == 1)) return { "total_tickers": total_tickers, "sp500_count": sp500_count, "nasdaq100_count": nasdaq100_count, "updated_at": last, "not_updated_reason": "Tickers not updated: last update was less than 1 day ago. Use force_refresh to override." } sp500_list = await self.get_sp500_tickers() nasdaq_list = await self.get_nasdaq100_tickers() combined = sp500_list + nasdaq_list ticker_dict = {} for t, n, s, sub in combined: ticker_dict[t] = { "name": n, "sector": s, "subindustry": sub, "is_sp500": 1 if t in [x[0] for x in sp500_list] else 0, "is_nasdaq100": 1 if t in [x[0] for x in nasdaq_list] else 0 } all_tickers = sorted(ticker_dict.keys()) current_time = now await session.execute(delete(Ticker)) ticker_objects = [ Ticker( ticker=t, name=ticker_dict[t]["name"], sector=ticker_dict[t]["sector"], subindustry=ticker_dict[t]["subindustry"], is_sp500=ticker_dict[t]["is_sp500"], is_nasdaq100=ticker_dict[t]["is_nasdaq100"], last_updated=current_time ) for t in all_tickers ] session.add_all(ticker_objects) await session.commit() result = { "total_tickers": len(all_tickers), "sp500_count": len(sp500_list), "nasdaq100_count": len(nasdaq_list), "updated_at": current_time } self.logger.info( "Tickers table updated: total=%d, sp500=%d, nasdaq100=%d at %s", result["total_tickers"], result["sp500_count"], result["nasdaq100_count"], result["updated_at"].isoformat() ) return result except Exception as e: await session.rollback() self.logger.error(f"Failed to update tickers: {e}") raise class YFinanceService: def __init__(self, config: Config): self.config = config self.logger = logging.getLogger(__name__) async def check_tickers_freshness(self, session: AsyncSession) -> bool: """ Check if tickers were updated within the last week (7 days). Returns True if fresh, False if need update. """ try: now = datetime.now(pytz.UTC) result = await session.execute( select(Ticker.last_updated).order_by(Ticker.last_updated.desc()).limit(1) ) last_update = result.scalar() if not last_update: self.logger.info("No tickers found in database") return False # Ensure timezone awareness if last_update.tzinfo is None: last_update = pytz.UTC.localize(last_update) delta = now - last_update is_fresh = delta.total_seconds() < (7 * 24 * 3600) # 7 days self.logger.info(f"Tickers last updated: {last_update.isoformat()}, Fresh: {is_fresh}") return is_fresh except Exception as e: self.logger.error(f"Error checking ticker freshness: {e}") return False async def check_ticker_data_freshness(self, session: AsyncSession) -> bool: """ Check if ticker data was updated within the last day (24 hours). Returns True if fresh, False if need update. """ try: now = datetime.now(pytz.UTC) result = await session.execute( select(TickerData.created_at).order_by(TickerData.created_at.desc()).limit(1) ) last_update = result.scalar() if not last_update: self.logger.info("No ticker data found in database") return False # Ensure timezone awareness if last_update.tzinfo is None: last_update = pytz.UTC.localize(last_update) delta = now - last_update is_fresh = delta.total_seconds() < (24 * 3600) # 24 hours self.logger.info(f"Ticker data last updated: {last_update.isoformat()}, Fresh: {is_fresh}") return is_fresh except Exception as e: self.logger.error(f"Error checking ticker data freshness: {e}") return False async def clear_and_bulk_insert_ticker_data(self, session: AsyncSession, ticker_list: List[str]) -> Dict[str, Any]: """ Clear all ticker data and insert new data in bulk with chunking for better performance. Uses bulk delete and bulk insert with chunks of 500 records. """ try: # Start timing for total end-to-end process total_start_time = time.perf_counter() self.logger.info(f"Starting bulk data refresh for {len(ticker_list)} tickers (clear and insert)") # Start timing for data download download_start_time = time.perf_counter() # Download data for all tickers at once using period data = yf.download(ticker_list, period='1mo', group_by='ticker', progress=True, auto_adjust=True) download_end_time = time.perf_counter() download_duration = download_end_time - download_start_time self.logger.info(f"DEBUG: Data download completed in {download_duration:.2f} seconds for {len(ticker_list)} tickers") if data.empty: self.logger.warning("No data found for any tickers") return { "created": 0, "updated": 0, "date_range": {"start_date": "", "end_date": ""} } # Start timing for database operations db_start_time = time.perf_counter() # Clear all existing ticker data self.logger.info("Clearing all existing ticker data...") clear_start = time.perf_counter() await session.execute(delete(TickerData)) clear_end = time.perf_counter() self.logger.info(f"DEBUG: Data cleared in {clear_end - clear_start:.2f} seconds") # Prepare data for bulk insert current_time = datetime.now(pytz.UTC) all_records = [] # Get actual date range from the data all_dates = data.index.tolist() start_date = min(all_dates).date() if all_dates else datetime.now().date() end_date = max(all_dates).date() if all_dates else datetime.now().date() # Handle both single ticker and multi-ticker cases if len(ticker_list) == 1: # Single ticker case - data is not grouped ticker = ticker_list[0] for date_idx, row in data.iterrows(): if pd.isna(row['Close']): continue trade_date = date_idx.date() record = { 'ticker': ticker, 'date': trade_date, 'open': float(row['Open']), 'high': float(row['High']), 'low': float(row['Low']), 'close': float(row['Close']), 'volume': int(row['Volume']), 'created_at': current_time } all_records.append(record) else: # Multiple tickers case - data is grouped by ticker for ticker in ticker_list: if ticker not in data.columns.get_level_values(0): self.logger.warning(f"No data found for ticker {ticker}") continue ticker_data = data[ticker] if ticker_data.empty: continue for date_idx, row in ticker_data.iterrows(): if pd.isna(row['Close']): continue trade_date = date_idx.date() record = { 'ticker': ticker, 'date': trade_date, 'open': float(row['Open']), 'high': float(row['High']), 'low': float(row['Low']), 'close': float(row['Close']), 'volume': int(row['Volume']), 'created_at': current_time } all_records.append(record) # Bulk insert in chunks of 1000 (optimized for MySQL performance) chunk_size = 1000 total_records = len(all_records) inserted_count = 0 self.logger.info(f"Inserting {total_records} records in chunks of {chunk_size}") for i in range(0, total_records, chunk_size): chunk = all_records[i:i + chunk_size] chunk_start = time.perf_counter() # Create TickerData objects for bulk insert ticker_objects = [TickerData(**record) for record in chunk] session.add_all(ticker_objects) chunk_end = time.perf_counter() inserted_count += len(chunk) self.logger.info(f"DEBUG: Inserted chunk {i//chunk_size + 1}/{(total_records + chunk_size - 1)//chunk_size} ({len(chunk)} records) in {chunk_end - chunk_start:.2f} seconds") # Commit all changes commit_start = time.perf_counter() await session.commit() commit_end = time.perf_counter() self.logger.info(f"DEBUG: Database commit completed in {commit_end - commit_start:.2f} seconds") db_end_time = time.perf_counter() db_duration = db_end_time - db_start_time self.logger.info(f"DEBUG: Database operations completed in {db_duration:.2f} seconds for {inserted_count} records") # Calculate total end-to-end duration total_end_time = time.perf_counter() total_duration = total_end_time - total_start_time self.logger.info(f"DEBUG: Total bulk refresh completed in {total_duration:.2f} seconds (download: {download_duration:.2f}s, database: {db_duration:.2f}s)") self.logger.info(f"Bulk refresh: inserted {inserted_count} records") return { "created": inserted_count, "updated": 0, "date_range": { "start_date": start_date.isoformat(), "end_date": end_date.isoformat() } } except Exception as e: await session.rollback() self.logger.error(f"Error in bulk refresh: {e}") raise async def download_all_tickers_data(self, session: AsyncSession, ticker_list: Optional[List[str]] = None) -> Dict[str, Any]: """ Download data for all or specified tickers for the last month. Uses smart strategy: checks data freshness, if > 24h, clears DB and bulk inserts new data. """ try: # Check ticker freshness and update if needed if not await self.check_tickers_freshness(session): self.logger.info("Tickers are stale, updating...") ticker_service = TickerService(self.config) await ticker_service.update_tickers_in_db(session, force_refresh=True) # Get tickers to process if ticker_list: # Validate provided tickers exist in database result = await session.execute( select(Ticker.ticker).where(Ticker.ticker.in_(ticker_list)) ) valid_tickers = [row[0] for row in result.fetchall()] invalid_tickers = set(ticker_list) - set(valid_tickers) if invalid_tickers: self.logger.warning(f"Invalid tickers ignored: {invalid_tickers}") tickers_to_process = valid_tickers else: # Get all tickers from database result = await session.execute(select(Ticker.ticker)) tickers_to_process = [row[0] for row in result.fetchall()] if not tickers_to_process: return { "tickers_processed": 0, "records_created": 0, "records_updated": 0, "date_range": {"start_date": "", "end_date": ""}, "message": "No valid tickers found to process" } # Check if ticker data is fresh (less than 24h old) if await self.check_ticker_data_freshness(session): self.logger.info("Ticker data is fresh (less than 24h old), skipping update") return { "tickers_processed": len(tickers_to_process), "records_created": 0, "records_updated": 0, "date_range": {"start_date": "", "end_date": ""}, "message": f"Data is fresh, no update needed for {len(tickers_to_process)} tickers" } # Data is stale - use bulk refresh strategy self.logger.info("Data is stale (>24h old), using bulk refresh strategy") result = await self.clear_and_bulk_insert_ticker_data(session, tickers_to_process) total_created = result["created"] total_updated = result["updated"] successful_tickers = len(tickers_to_process) return { "tickers_processed": successful_tickers, "records_created": total_created, "records_updated": total_updated, "date_range": result["date_range"], "message": f"Successfully processed {successful_tickers} tickers using bulk refresh" } except Exception as e: self.logger.error(f"Error in download_all_tickers_data: {e}") raise # --- DATABASE --- class Database: def __init__(self, config: Config): self.config = config # Filter out pool params not supported by NullPool db_opts = self.config.config.get('database', {}).copy() db_opts.pop('pool_size', None) db_opts.pop('max_overflow', None) self.engine = create_async_engine( config.database_url, pool_pre_ping=True, poolclass=NullPool, **db_opts ) self.async_session = async_sessionmaker( self.engine, class_=AsyncSession, expire_on_commit=False ) async def create_tables(self): async with self.engine.begin() as conn: await conn.run_sync(Base.metadata.create_all) # --- TASK MANAGER --- from sqlalchemy import JSON as SQLAlchemyJSON class Task(Base): __tablename__ = "tasks" task_id: Mapped[str] = mapped_column(String(64), primary_key=True) status: Mapped[str] = mapped_column(String(32), nullable=False) message: Mapped[Optional[str]] = mapped_column(String(255), nullable=True) result: Mapped[Optional[dict]] = mapped_column(SQLAlchemyJSON, nullable=True) created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False) class TaskManager: def __init__(self, database: Database): self.database = database async def create_table_if_not_exists(self): async with self.database.engine.begin() as conn: await conn.run_sync(Base.metadata.create_all) async def create_task(self, task_id: str) -> TaskStatus: async with self.database.async_session() as session: now = datetime.utcnow() db_task = Task( task_id=task_id, status="pending", message=None, result=None, created_at=now ) session.add(db_task) await session.commit() return TaskStatus( task_id=task_id, status="pending", message=None, result=None, created_at=now ) async def update_task(self, task_id: str, status: str, message: str = None, result: Dict = None): def serialize_datetimes(obj): if isinstance(obj, dict): return {k: serialize_datetimes(v) for k, v in obj.items()} elif isinstance(obj, list): return [serialize_datetimes(v) for v in obj] elif isinstance(obj, datetime): return obj.isoformat() else: return obj async with self.database.async_session() as session: db_task = await session.get(Task, task_id) if db_task: db_task.status = status db_task.message = message db_task.result = serialize_datetimes(result) if result is not None else None await session.commit() async def get_task(self, task_id: str) -> Optional[TaskStatus]: async with self.database.async_session() as session: db_task = await session.get(Task, task_id) if db_task: return TaskStatus( task_id=db_task.task_id, status=db_task.status, message=db_task.message, result=db_task.result, created_at=db_task.created_at ) return None async def list_tasks(self) -> list[TaskStatus]: async with self.database.async_session() as session: result = await session.execute(select(Task)) tasks = result.scalars().all() return [ TaskStatus( task_id=t.task_id, status=t.status, message=t.message, result=t.result, created_at=t.created_at ) for t in tasks ] async def delete_old_tasks(self, older_than_seconds: int = 3600) -> int: cutoff = datetime.utcnow() - timedelta(seconds=older_than_seconds) async with self.database.async_session() as session: result = await session.execute(select(Task).where(Task.created_at < cutoff)) old_tasks = result.scalars().all() count = len(old_tasks) for t in old_tasks: await session.delete(t) await session.commit() return count # --- APP SETUP --- # Global instances config = Config() database = Database(config) ticker_service = TickerService(config) yfinance_service = YFinanceService(config) task_manager = TaskManager(database) # Dependency function async def get_db_session() -> AsyncGenerator[AsyncSession, None]: async with database.async_session() as session: yield session @asynccontextmanager async def lifespan(app: FastAPI): # Startup await database.create_tables() await task_manager.create_table_if_not_exists() logging.info("Database tables created/verified") yield # Shutdown await database.engine.dispose() logging.info("Database connections closed") # Create FastAPI app app = FastAPI( title="Stock Monitoring API", description="API for managing S&P 500 and Nasdaq 100 ticker data", version="0.1.0", lifespan=lifespan, swagger_ui_parameters={"faviconUrl": "/static/favicon.ico"} ) # Serve static files (make sure a 'static' folder exists at project root with favicon.ico inside) app.mount("/static", StaticFiles(directory=os.path.join(os.path.dirname(__file__), "static")), name="static") # Favicon endpoint @app.api_route("/favicon.ico", methods=["GET", "HEAD"], include_in_schema=False) async def favicon(): return FileResponse(os.path.join(os.path.dirname(__file__), "static", "favicon.ico")) # --- API ENDPOINTS --- @app.get("/") async def root_info(): """ Get API health status, current timestamp, versions, and DB/tables check. **Logic**: - Returns a JSON object with: - **status**: Health status of the API - **timestamp**: Current time in UTC timezone - **versions**: Dictionary with Python and main library versions - **database**: Connection status and existence of 'tickers' and 'tasks' tables **Args**: None **Example response:** ```json { "status": "healthy", "timestamp": "2025-07-19T19:38:26+02:00", "versions": { ... }, "database": { "connected": true, "tickers_table": true, "tasks_table": true } } ``` """ now_utc = datetime.now(pytz.UTC) versions = {} versions["python"] = platform.python_version() packages = ["uvicorn", "fastapi", "sqlalchemy", "pandas"] for pkg in packages: try: versions[pkg] = importlib.metadata.version(pkg) except Exception: versions[pkg] = None db_status = { "connected": False, "tickers_table": False, "tasks_table": False } db_check_time = None start = time.perf_counter() try: async with database.engine.connect() as conn: db_status["connected"] = True insp = await conn.run_sync(lambda c: c.dialect.get_table_names(c)) db_status["tickers_table"] = "tickers" in insp db_status["tasks_table"] = "tasks" in insp except Exception as e: db_status["connected"] = False finally: db_check_time = time.perf_counter() - start return { "status": "healthy" if db_status["connected"] and db_status["tickers_table"] and db_status["tasks_table"] else "degraded", "timestamp": now_utc.isoformat(), "versions": versions, "database": db_status, "db_check_seconds": round(db_check_time, 4) if db_check_time is not None else None } @app.get("/tickers", response_model=List[TickerResponse]) async def get_tickers( is_sp500: Optional[bool] = None, is_nasdaq: Optional[bool] = None, limit: int = 1000, session: AsyncSession = Depends(get_db_session) ): """ Get all tickers from database with optional filtering. **Logic**: - No parameters: Return all tickers - is_sp500=true: Only S&P 500 tickers - is_sp500=false: Only NON-S&P 500 tickers - is_nasdaq=true: Only Nasdaq 100 tickers - is_nasdaq=false: Only NON-Nasdaq 100 tickers - Both parameters: Apply AND logic (intersection of conditions) **Args (all optional)**: - **is_sp500** (optional): Filter for S&P 500 membership (true/false/None) - **is_nasdaq** (optional): Filter for Nasdaq 100 membership (true/false/None) - **limit** (optional): Maximum number of results to return **Examples:** - `GET /tickers` - All tickers - `GET /tickers?is_sp500=true` - Only S&P 500 - `GET /tickers?is_nasdaq=true&is_sp500=false` - Only Nasdaq 100 but not S&P 500 - `GET /tickers?is_sp500=true&is_nasdaq=false` - S&P 500 but not Nasdaq 100 """ try: query = select(Ticker) # Build conditions based on explicit flag values conditions = [] if is_sp500 is not None: if is_sp500: conditions.append(Ticker.is_sp500 == 1) else: conditions.append(Ticker.is_sp500 == 0) if is_nasdaq is not None: if is_nasdaq: conditions.append(Ticker.is_nasdaq100 == 1) else: conditions.append(Ticker.is_nasdaq100 == 0) # Apply filtering if we have conditions if conditions: from sqlalchemy import and_ query = query.where(and_(*conditions)) query = query.limit(limit).order_by(Ticker.ticker) result = await session.execute(query) tickers = result.scalars().all() return [ TickerResponse( ticker=t.ticker, name=t.name, sector=t.sector, subindustry=t.subindustry, is_sp500=bool(t.is_sp500), is_nasdaq100=bool(t.is_nasdaq100), last_updated=t.last_updated ) for t in tickers ] except Exception as e: logging.error(f"Error fetching tickers: {e}") raise HTTPException(status_code=500, detail="Failed to fetch tickers") @app.post("/tickers/update", response_model=UpdateTickersResponse) async def update_tickers( request: UpdateTickersRequest, background_tasks: BackgroundTasks, session: AsyncSession = Depends(get_db_session), api_key: str = Depends(verify_api_key) ): """ Update tickers from Wikipedia sources (S&P 500 and Nasdaq 100). **Logic**: - Fetches latest tickers from Wikipedia (S&P 500 and Nasdaq 100). - Updates the database with the new tickers. - Returns summary of update (counts, timestamp). **Args**: - **request**: UpdateTickersRequest (force_refresh: bool) - **background_tasks**: FastAPI BackgroundTasks (unused) - **session**: AsyncSession (DB session, injected) **Example request:** ```json { "force_refresh": false } { "force_refresh": true } ``` **Example response:** ```json { "success": true, "message": "Tickers updated successfully", "total_tickers": 517, "sp500_count": 500, "nasdaq100_count": 100, "updated_at": "2025-07-19T19:38:26+02:00" } ``` """ try: result = await ticker_service.update_tickers_in_db(session, force_refresh=request.force_refresh) message = result.pop("not_updated_reason", None) if message: return UpdateTickersResponse( success=True, message=message, **result ) return UpdateTickersResponse( success=True, message="Tickers updated successfully", **result ) except Exception as e: logging.error(f"Error updating tickers: {e}") raise HTTPException(status_code=500, detail=f"Failed to update tickers: {str(e)}") @app.post("/tickers/update-async") async def update_tickers_async( request: UpdateTickersRequest, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key) ): """ Start async ticker update task (background). **Logic**: - Launches a background task to update tickers from Wikipedia. - Returns a task_id and status for tracking. **Args**: - **request**: UpdateTickersRequest (force_refresh: bool) **Example request:** ```json { "force_refresh": false } { "force_refresh": true } ``` **Example response:** ```json { "task_id": "c1a2b3d4-5678-90ab-cdef-1234567890ab", "status": "started" } ``` """ import uuid task_id = str(uuid.uuid4()) await task_manager.create_task(task_id) async def update_task(): try: await task_manager.update_task(task_id, "running", "Updating tickers...") async with database.async_session() as session: result = await ticker_service.update_tickers_in_db(session, force_refresh=request.force_refresh) message = result.pop("not_updated_reason", None) if message: await task_manager.update_task(task_id, "completed", message, result) else: await task_manager.update_task(task_id, "completed", "Update successful", result) except Exception as e: await task_manager.update_task(task_id, "failed", str(e)) background_tasks.add_task(update_task) return {"task_id": task_id, "status": "started"} @app.get("/tasks", response_model=List[TaskStatus]) async def list_all_tasks(api_key: str = Depends(verify_api_key)): """ List all background tasks and their status. **Logic**: - Returns a list of all tasks created via async update endpoint, with their status and result. **Args**: None **Example response:** ```json [ { "task_id": "c1a2b3d4-5678-90ab-cdef-1234567890ab", "status": "completed", "message": "Tickers updated successfully", "result": { "total_tickers": 517, "sp500_count": 500, "nasdaq100_count": 100, "updated_at": "2025-07-19T19:38:26+02:00" }, "created_at": "2025-07-19T19:38:26+02:00" }, ... ] ``` """ return await task_manager.list_tasks() @app.get("/tasks/{task_id}", response_model=TaskStatus) async def get_task_status(task_id: str, api_key: str = Depends(verify_api_key)): """ Get status and result of a background update task by task_id. **Logic**: - Returns the status and result of a background update task by task_id. - If not found, returns 404. **Args**: - **task_id**: str (UUID of the task) **Example response:** ```json { "task_id": "c1a2b3d4-5678-90ab-cdef-1234567890ab", "status": "completed", "message": "Tickers updated successfully", "result": { "total_tickers": 517, "sp500_count": 500, "nasdaq100_count": 100, "updated_at": "2025-07-19T19:38:26+02:00" }, "created_at": "2025-07-19T19:38:26+02:00" } ``` """ task = await task_manager.get_task(task_id) if not task: raise HTTPException(status_code=404, detail="Task not found") return task # Endpoint to delete tasks older than 1 hour @app.delete("/tasks/old", response_model=dict) async def delete_old_tasks(api_key: str = Depends(verify_api_key)): """ Delete tasks older than 1 hour (3600 seconds). **Logic**: - Deletes all tasks in the database older than 1 hour. - Returns the number of deleted tasks. **Args**: None **Example response:** ```json { "deleted": 5 } ``` """ deleted_count = await task_manager.delete_old_tasks(older_than_seconds=3600) return {"deleted": deleted_count} @app.post("/data/download-all", response_model=DownloadDataResponse) async def download_all_tickers_data( session: AsyncSession = Depends(get_db_session), api_key: str = Depends(verify_api_key) ): """ Download daily ticker data for the last month for ALL tickers in database. **Logic**: - Automatically downloads data for all tickers stored in the tickers table - Checks if tickers were updated within the last week, updates if needed - Only downloads if ticker data is older than 24 hours - Downloads daily data for the last 30 days for all available tickers - Uses bulk delete and insert strategy for optimal performance - Returns summary with counts and date range **Args**: - **session**: AsyncSession (DB session, injected) - **api_key**: str (API key for authentication, injected) **Example request:** ```bash curl -X POST "http://localhost:${PORT}/data/download-all" \ -H "Authorization: Bearer your_api_key" ``` **Example response:** ```json { "success": true, "message": "Successfully processed 503 tickers using bulk refresh", "tickers_processed": 503, "records_created": 12075, "records_updated": 0, "date_range": { "start_date": "2025-06-30", "end_date": "2025-07-30" }, "updated_at": "2025-07-30T14:15:26+00:00" } ``` """ try: # Use existing service without specifying ticker list (downloads all) result = await yfinance_service.download_all_tickers_data( session, ticker_list=None # None means download all tickers ) return DownloadDataResponse( success=True, message=result["message"], tickers_processed=result["tickers_processed"], records_created=result["records_created"], records_updated=result["records_updated"], date_range=result["date_range"], updated_at=datetime.now(pytz.UTC) ) except Exception as e: logging.error(f"Error downloading all ticker data: {e}") raise HTTPException(status_code=500, detail=f"Failed to download all ticker data: {str(e)}") @app.get("/data/tickers/{ticker}", response_model=List[TickerDataResponse]) async def get_ticker_data( ticker: str, days: int = 30, session: AsyncSession = Depends(get_db_session) ): """ Get historical data for a specific ticker. **Logic**: - Returns historical data for the specified ticker - Defaults to last 30 days if no days parameter provided - Data is ordered by date descending (most recent first) **Args**: - **ticker**: str (Ticker symbol, e.g., "AAPL") - **days**: int (Number of days to retrieve, default 30) - **session**: AsyncSession (DB session, injected) **Example response:** ```json [ { "ticker": "AAPL", "date": "2025-07-30", "open": 150.25, "high": 152.80, "low": 149.50, "close": 151.75, "volume": 45123000, "created_at": "2025-07-30T13:45:26+00:00" } ] ``` """ try: # Calculate date range end_date = datetime_date.today() start_date = end_date - timedelta(days=days) # Query ticker data query = select(TickerData).where( TickerData.ticker == ticker.upper(), TickerData.date >= start_date, TickerData.date <= end_date ).order_by(TickerData.date.desc()) result = await session.execute(query) ticker_data = result.scalars().all() if not ticker_data: raise HTTPException( status_code=404, detail=f"No data found for ticker {ticker.upper()} in the last {days} days" ) return [ TickerDataResponse( ticker=data.ticker, date=data.date, open=data.open, high=data.high, low=data.low, close=data.close, volume=data.volume, created_at=data.created_at ) for data in ticker_data ] except HTTPException: raise except Exception as e: logging.error(f"Error fetching ticker data for {ticker}: {e}") raise HTTPException(status_code=500, detail="Failed to fetch ticker data") # Local execution configuration if __name__ == "__main__": import uvicorn HOST = os.getenv("HOST", "0.0.0.0") PORT = int(os.getenv("PORT", 8000)) # Determina el valor de reload segĂșn la variable de entorno PROD RELOAD = os.getenv("PROD", "False") != "True" # Start the Uvicorn server uvicorn.run("index:app", host=HOST, port=PORT, reload=RELOAD)