commit
Browse files
app.py
CHANGED
@@ -1,96 +1,132 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import os
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
# 環境変数からトークンを取得
|
7 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
8 |
-
if not HUGGINGFACE_TOKEN:
|
9 |
-
|
10 |
|
11 |
|
12 |
-
def _load_model():
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
_load_model()
|
19 |
|
20 |
-
# モデルとトークナイザーの初期化
|
21 |
-
MODEL_NAME = "google/gemma-7b-it"
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN)
|
23 |
-
model = AutoModelForCausalLM.from_pretrained(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
-
|
30 |
-
def generate_response(prompt):
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
def respond(message, history):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
# Gradioインターフェースの設定
|
67 |
-
iface = gr.ChatInterface(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
91 |
if __name__ == "__main__":
|
92 |
-
iface.launch(
|
93 |
-
share=True,
|
94 |
-
server_name="0.0.0.0",
|
95 |
-
server_port=7860
|
96 |
-
)
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import torch
|
3 |
+
# import os
|
4 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
# # 環境変数からトークンを取得
|
7 |
+
# HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
8 |
+
# if not HUGGINGFACE_TOKEN:
|
9 |
+
# raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
10 |
|
11 |
|
12 |
+
# def _load_model():
|
13 |
+
# if not torch.cuda.is_available():
|
14 |
+
# raise RuntimeError("GPU is not available but required.")
|
15 |
+
# print("GPU is available and model will be loaded.")
|
16 |
+
# return "GPU ready"
|
17 |
|
18 |
+
# _load_model()
|
19 |
|
20 |
+
# # モデルとトークナイザーの初期化
|
21 |
+
# MODEL_NAME = "google/gemma-7b-it"
|
22 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN)
|
23 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
# MODEL_NAME,
|
25 |
+
# torch_dtype=torch.float16,
|
26 |
+
# device_map="auto",
|
27 |
+
# token=HUGGINGFACE_TOKEN
|
28 |
+
# )
|
29 |
+
|
30 |
+
# def generate_response(prompt):
|
31 |
+
# # プロンプトの準備
|
32 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
33 |
|
34 |
+
# # 応答の生成
|
35 |
+
# with torch.no_grad():
|
36 |
+
# outputs = model.generate(
|
37 |
+
# **inputs,
|
38 |
+
# max_new_tokens=512,
|
39 |
+
# temperature=0.7,
|
40 |
+
# top_p=0.9,
|
41 |
+
# do_sample=True,
|
42 |
+
# pad_token_id=tokenizer.eos_token_id
|
43 |
+
# )
|
44 |
|
45 |
+
# # 応答のデコード
|
46 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
+
# return response
|
48 |
|
49 |
+
# def respond(message, history):
|
50 |
+
# # チャット履歴の構築
|
51 |
+
# chat_history = ""
|
52 |
+
# for msg in history:
|
53 |
+
# chat_history += f"{msg['role']}: {msg['content']}\n"
|
54 |
|
55 |
+
# # 現在のメッセージを追加
|
56 |
+
# prompt = f"{chat_history}Human: {message}\nAssistant:"
|
57 |
|
58 |
+
# try:
|
59 |
+
# response = generate_response(prompt)
|
60 |
+
# # 応答から余分な部分を削除
|
61 |
+
# response = response.split("Assistant:")[-1].strip()
|
62 |
+
# return response
|
63 |
+
# except Exception as e:
|
64 |
+
# return f"エラーが発生しました: {str(e)}"
|
65 |
+
|
66 |
+
# # Gradioインターフェースの設定
|
67 |
+
# iface = gr.ChatInterface(
|
68 |
+
# fn=respond,
|
69 |
+
# textbox=gr.Textbox(
|
70 |
+
# placeholder="メッセージを入力してください...",
|
71 |
+
# container=False,
|
72 |
+
# scale=7,
|
73 |
+
# lines=2
|
74 |
+
# ),
|
75 |
+
# chatbot=gr.Chatbot(
|
76 |
+
# height=600,
|
77 |
+
# show_copy_button=True,
|
78 |
+
# show_share_button=True,
|
79 |
+
# avatar_images=(None, None)
|
80 |
+
# ),
|
81 |
+
# title="Gemma Chat Assistant",
|
82 |
+
# description="Google Gemmaモデルを使用したチャットアシスタントです。",
|
83 |
+
# theme=gr.themes.Soft(),
|
84 |
+
# examples=[
|
85 |
+
# "こんにちは",
|
86 |
+
# "自己紹介をしてください",
|
87 |
+
# "Pythonについて教えてください"
|
88 |
+
# ]
|
89 |
+
# )
|
90 |
+
|
91 |
+
# if __name__ == "__main__":
|
92 |
+
# iface.launch(
|
93 |
+
# share=True,
|
94 |
+
# server_name="0.0.0.0",
|
95 |
+
# server_port=7860
|
96 |
+
# )
|
97 |
+
|
98 |
+
|
99 |
+
import os, torch, gradio as gr
|
100 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
101 |
+
|
102 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
103 |
+
MODEL_NAME = "google/gemma-7b-it"
|
104 |
+
|
105 |
+
model, tokenizer = None, None # ← グローバルで空のまま
|
106 |
+
|
107 |
+
def load_model():
|
108 |
+
"""初回リクエスト時にのみ GPU を要求してモデルをロード"""
|
109 |
+
global model, tokenizer
|
110 |
+
if model is not None:
|
111 |
+
return
|
112 |
+
if not torch.cuda.is_available():
|
113 |
+
# ZeroGPU ならここで一度 False → 数秒待って再度 True になることもある
|
114 |
+
raise RuntimeError("GPU still not attached (ZeroGPU)。数秒後に再試行してください。")
|
115 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN)
|
116 |
+
model = AutoModelForCausalLM.from_pretrained(
|
117 |
+
MODEL_NAME,
|
118 |
+
device_map="auto",
|
119 |
+
torch_dtype=torch.float16,
|
120 |
+
token=HUGGINGFACE_TOKEN
|
121 |
+
)
|
122 |
+
|
123 |
+
def respond(message, history):
|
124 |
+
load_model() # ← ここで初めて GPU を確保・モデルロード
|
125 |
+
inputs = tokenizer(message, return_tensors="pt").to(model.device)
|
126 |
+
with torch.no_grad():
|
127 |
+
out = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
|
128 |
+
return tokenizer.decode(out[0], skip_special_tokens=True)
|
129 |
|
130 |
+
iface = gr.ChatInterface(fn=respond, title="Gemma-ZeroGPU Demo")
|
131 |
if __name__ == "__main__":
|
132 |
+
iface.launch()
|
|
|
|
|
|
|
|