Create planning_agent.py
Browse files- planning_agent.py +298 -0
planning_agent.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from datetime import datetime
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class Interaction:
|
11 |
+
"""Record of a single interaction with the agent"""
|
12 |
+
timestamp: datetime
|
13 |
+
query: str
|
14 |
+
plan: Dict[str, Any]
|
15 |
+
|
16 |
+
class Agent:
|
17 |
+
def __init__(self, model: str = "Qwen/Qwen2.5-Coder-32B-Instruct"):
|
18 |
+
"""Initialize Agent with empty interaction history."""
|
19 |
+
self.interactions: List[Interaction] = [] # Working memory
|
20 |
+
self.model = model
|
21 |
+
|
22 |
+
def _query_llm(self, messages):
|
23 |
+
headers = {
|
24 |
+
"Content-Type": "application/json"
|
25 |
+
}
|
26 |
+
data = {
|
27 |
+
"model": self.model,
|
28 |
+
"messages": messages,
|
29 |
+
"max_tokens": 150
|
30 |
+
}
|
31 |
+
response = requests.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, data=json.dumps(data))
|
32 |
+
print("Original response ", response.json())
|
33 |
+
print("\nOriginal response type", type(json.loads(response.choices[0].message.content)))
|
34 |
+
# final_response = response.json()['choices'][0]['message']['content'].strip()
|
35 |
+
# print("LLM Response ", final_response)
|
36 |
+
|
37 |
+
return response.choices[0].message.content
|
38 |
+
|
39 |
+
def create_system_prompt(self) -> str:
|
40 |
+
"""Create the system prompt for the LLM with available tools."""
|
41 |
+
tools_json = {
|
42 |
+
"role": "AI Assistant",
|
43 |
+
"capabilities": [
|
44 |
+
"Using provided tools to help users when necessary",
|
45 |
+
"Responding directly without tools for questions that don't require tool usage",
|
46 |
+
"Planning efficient tool usage sequences",
|
47 |
+
"If asked by the user, reflecting on the plan and suggesting changes if needed"
|
48 |
+
],
|
49 |
+
"instructions": [
|
50 |
+
"Use tools only when they are necessary for the task",
|
51 |
+
"If a query can be answered directly, respond with a simple message instead of using tools",
|
52 |
+
"When tools are needed, plan their usage efficiently to minimize tool calls",
|
53 |
+
"If asked by the user, reflect on the plan and suggest changes if needed"
|
54 |
+
],
|
55 |
+
"tools": [
|
56 |
+
{
|
57 |
+
"name": "convert_currency",
|
58 |
+
"description": "Converts currency using latest exchange rates.",
|
59 |
+
"parameters": {
|
60 |
+
"amount": {
|
61 |
+
"type": "float",
|
62 |
+
"description": "Amount to convert"
|
63 |
+
},
|
64 |
+
"from_currency": {
|
65 |
+
"type": "str",
|
66 |
+
"description": "Source currency code (e.g., USD)"
|
67 |
+
},
|
68 |
+
"to_currency": {
|
69 |
+
"type": "str",
|
70 |
+
"description": "Target currency code (e.g., EUR)"
|
71 |
+
}
|
72 |
+
}
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"response_format": {
|
76 |
+
"type": "json",
|
77 |
+
"schema": {
|
78 |
+
"requires_tools": {
|
79 |
+
"type": "boolean",
|
80 |
+
"description": "whether tools are needed for this query"
|
81 |
+
},
|
82 |
+
"direct_response": {
|
83 |
+
"type": "string",
|
84 |
+
"description": "response when no tools are needed",
|
85 |
+
"optional": True
|
86 |
+
},
|
87 |
+
"thought": {
|
88 |
+
"type": "string",
|
89 |
+
"description": "reasoning about how to solve the task (when tools are needed)",
|
90 |
+
"optional": True
|
91 |
+
},
|
92 |
+
"plan": {
|
93 |
+
"type": "array",
|
94 |
+
"items": {"type": "string"},
|
95 |
+
"description": "steps to solve the task (when tools are needed)",
|
96 |
+
"optional": True
|
97 |
+
},
|
98 |
+
"tool_calls": {
|
99 |
+
"type": "array",
|
100 |
+
"items": {
|
101 |
+
"type": "object",
|
102 |
+
"properties": {
|
103 |
+
"tool": {
|
104 |
+
"type": "string",
|
105 |
+
"description": "name of the tool"
|
106 |
+
},
|
107 |
+
"args": {
|
108 |
+
"type": "object",
|
109 |
+
"description": "parameters for the tool"
|
110 |
+
}
|
111 |
+
}
|
112 |
+
},
|
113 |
+
"description": "tools to call in sequence (when tools are needed)",
|
114 |
+
"optional": True
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"examples": [
|
118 |
+
{
|
119 |
+
"query": "Convert 100 USD to EUR",
|
120 |
+
"response": {
|
121 |
+
"requires_tools": True,
|
122 |
+
"thought": "I need to use the currency conversion tool to convert USD to EUR",
|
123 |
+
"plan": [
|
124 |
+
"Use convert_currency tool to convert 100 USD to EUR",
|
125 |
+
"Return the conversion result"
|
126 |
+
],
|
127 |
+
"tool_calls": [
|
128 |
+
{
|
129 |
+
"tool": "convert_currency",
|
130 |
+
"args": {
|
131 |
+
"amount": 100,
|
132 |
+
"from_currency": "USD",
|
133 |
+
"to_currency": "EUR"
|
134 |
+
}
|
135 |
+
}
|
136 |
+
]
|
137 |
+
}
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"query": "What's 500 Japanese Yen in British Pounds?",
|
141 |
+
"response": {
|
142 |
+
"requires_tools": True,
|
143 |
+
"thought": "I need to convert JPY to GBP using the currency converter",
|
144 |
+
"plan": [
|
145 |
+
"Use convert_currency tool to convert 500 JPY to GBP",
|
146 |
+
"Return the conversion result"
|
147 |
+
],
|
148 |
+
"tool_calls": [
|
149 |
+
{
|
150 |
+
"tool": "convert_currency",
|
151 |
+
"args": {
|
152 |
+
"amount": 500,
|
153 |
+
"from_currency": "JPY",
|
154 |
+
"to_currency": "GBP"
|
155 |
+
}
|
156 |
+
}
|
157 |
+
]
|
158 |
+
}
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"query": "What currency does Japan use?",
|
162 |
+
"response": {
|
163 |
+
"requires_tools": False,
|
164 |
+
"direct_response": "Japan uses the Japanese Yen (JPY) as its official currency. This is common knowledge that doesn't require using the currency conversion tool."
|
165 |
+
}
|
166 |
+
}
|
167 |
+
]
|
168 |
+
}
|
169 |
+
}
|
170 |
+
|
171 |
+
return f"""You are an AI assistant that helps users by providing direct answers or using tools when necessary.
|
172 |
+
Configuration, instructions, and available tools are provided in JSON format below:
|
173 |
+
{json.dumps(tools_json, indent=2)}
|
174 |
+
Always respond with a JSON object following the response_format schema above.
|
175 |
+
Remember to use tools only when they are actually needed for the task."""
|
176 |
+
|
177 |
+
def plan(self, user_query: str) -> Dict:
|
178 |
+
"""Use LLM to create a plan and store it in memory."""
|
179 |
+
messages = [
|
180 |
+
{"role": "system", "content": self.create_system_prompt()},
|
181 |
+
{"role": "user", "content": user_query}
|
182 |
+
]
|
183 |
+
|
184 |
+
response = self._query_llm(messages=messages)
|
185 |
+
|
186 |
+
try:
|
187 |
+
plan = json.loads(response)
|
188 |
+
# Store the interaction immediately after planning
|
189 |
+
interaction = Interaction(
|
190 |
+
timestamp=datetime.now(),
|
191 |
+
query=user_query,
|
192 |
+
plan=plan
|
193 |
+
)
|
194 |
+
self.interactions.append(interaction)
|
195 |
+
return plan
|
196 |
+
except json.JSONDecodeError:
|
197 |
+
raise ValueError("Failed to parse LLM response as JSON")
|
198 |
+
|
199 |
+
def reflect_on_plan(self) -> Dict[str, Any]:
|
200 |
+
"""Reflect on the most recent plan using interaction history."""
|
201 |
+
if not self.interactions:
|
202 |
+
return {"reflection": "No plan to reflect on", "requires_changes": False}
|
203 |
+
|
204 |
+
latest_interaction = self.interactions[-1]
|
205 |
+
|
206 |
+
reflection_prompt = {
|
207 |
+
"task": "reflection",
|
208 |
+
"context": {
|
209 |
+
"user_query": latest_interaction.query,
|
210 |
+
"generated_plan": latest_interaction.plan
|
211 |
+
},
|
212 |
+
"instructions": [
|
213 |
+
"Review the generated plan for potential improvements",
|
214 |
+
"Consider if the chosen tools are appropriate",
|
215 |
+
"Verify tool parameters are correct",
|
216 |
+
"Check if the plan is efficient",
|
217 |
+
"Determine if tools are actually needed"
|
218 |
+
],
|
219 |
+
"response_format": {
|
220 |
+
"type": "json",
|
221 |
+
"schema": {
|
222 |
+
"requires_changes": {
|
223 |
+
"type": "boolean",
|
224 |
+
"description": "whether the plan needs modifications"
|
225 |
+
},
|
226 |
+
"reflection": {
|
227 |
+
"type": "string",
|
228 |
+
"description": "explanation of what changes are needed or why no changes are needed"
|
229 |
+
},
|
230 |
+
"suggestions": {
|
231 |
+
"type": "array",
|
232 |
+
"items": {"type": "string"},
|
233 |
+
"description": "specific suggestions for improvements",
|
234 |
+
"optional": True
|
235 |
+
}
|
236 |
+
}
|
237 |
+
}
|
238 |
+
}
|
239 |
+
|
240 |
+
messages = [
|
241 |
+
{"role": "system", "content": self.create_system_prompt()},
|
242 |
+
{"role": "user", "content": json.dumps(reflection_prompt, indent=2)}
|
243 |
+
]
|
244 |
+
|
245 |
+
response = self._query_llm(messages=messages)
|
246 |
+
|
247 |
+
try:
|
248 |
+
return json.loads(response)
|
249 |
+
except json.JSONDecodeError:
|
250 |
+
return {"reflection": response.choices[0].message.content}
|
251 |
+
|
252 |
+
def execute(self, user_query: str) -> str:
|
253 |
+
"""Execute the full pipeline: plan, reflect, and potentially replan."""
|
254 |
+
try:
|
255 |
+
# Create initial plan (this also stores it in memory)
|
256 |
+
initial_plan = self.plan(user_query)
|
257 |
+
|
258 |
+
# Reflect on the plan using memory
|
259 |
+
reflection = self.reflect_on_plan()
|
260 |
+
|
261 |
+
# Check if reflection suggests changes
|
262 |
+
if reflection.get("requires_changes", False):
|
263 |
+
# Generate new plan based on reflection
|
264 |
+
messages = [
|
265 |
+
{"role": "system", "content": self.create_system_prompt()},
|
266 |
+
{"role": "user", "content": user_query},
|
267 |
+
{"role": "assistant", "content": json.dumps(initial_plan)},
|
268 |
+
{"role": "user", "content": f"Please revise the plan based on this feedback: {json.dumps(reflection)}"}
|
269 |
+
]
|
270 |
+
|
271 |
+
response = self._query_llm(messages=messages)
|
272 |
+
|
273 |
+
try:
|
274 |
+
final_plan = json.loads(response)
|
275 |
+
except json.JSONDecodeError:
|
276 |
+
final_plan = initial_plan # Fallback to initial plan if parsing fails
|
277 |
+
else:
|
278 |
+
final_plan = initial_plan
|
279 |
+
|
280 |
+
# Update the stored interaction with all information
|
281 |
+
self.interactions[-1].plan = {
|
282 |
+
"initial_plan": initial_plan,
|
283 |
+
"reflection": reflection,
|
284 |
+
"final_plan": final_plan
|
285 |
+
}
|
286 |
+
|
287 |
+
# Return the appropriate response
|
288 |
+
if final_plan.get("requires_tools", True):
|
289 |
+
return f"""Initial Thought: {initial_plan['thought']}
|
290 |
+
Initial Plan: {'. '.join(initial_plan['plan'])}
|
291 |
+
Reflection: {reflection.get('reflection', 'No improvements suggested')}
|
292 |
+
Final Plan: {'. '.join(final_plan['plan'])}"""
|
293 |
+
else:
|
294 |
+
return f"""Response: {final_plan['direct_response']}
|
295 |
+
Reflection: {reflection.get('reflection', 'No improvements suggested')}"""
|
296 |
+
|
297 |
+
except Exception as e:
|
298 |
+
return f"Error executing plan: {str(e)}"
|