import gradio as gr import numpy as np import joblib import tensorflow as tf from huggingface_hub import hf_hub_download # 1) 허브에서 모델·스케일러 파일 다운로드 model_path = hf_hub_download(repo_id="dklee2013/rc-column-predictor", filename="model0526.keras") sx_path = hf_hub_download(repo_id="dklee2013/rc-column-predictor", filename="sx.save") sy_path = hf_hub_download(repo_id="dklee2013/rc-column-predictor", filename="sy.save") model = tf.keras.models.load_model(model_path) scaler_X = joblib.load(sx_path) scaler_y = joblib.load(sy_path) def predict(f_ck, f_yk, N_Ed, M_Edz, M_Edy, cover, rebar_dia, dc_ratio): # 1차 예측 X1 = np.array([f_ck, f_yk, N_Ed, M_Edz, M_Edy, cover, rebar_dia]).reshape(1,-1) Y1 = scaler_y.inverse_transform(model.predict(scaler_X.transform(X1))) a = Y1[0,5] # 모멘트 보정 M_Edz_sc = M_Edz * (1/dc_ratio)**a M_Edy_sc = M_Edy * (1/dc_ratio)**a # 2차 예측 X2 = np.array([f_ck, f_yk, N_Ed, M_Edz_sc, M_Edy_sc, cover, rebar_dia]).reshape(1,-1) Y2 = scaler_y.inverse_transform(model.predict(scaler_X.transform(X2))) # 결과 b_pred = int(round(Y2[0,0]/50)*50) h_pred = int(round(Y2[0,1]/50)*50) rr = float(Y2[0,2]) rx = int(round(Y2[0,3])) ry = int(round(Y2[0,4])) z1_a = float(Y2[0,5]) z2_N = float(Y2[0,6]) z3_Mz = float(Y2[0,7]) z4_My = float(Y2[0,8]) SF = (M_Edz / z3_Mz)**z1_a + (M_Edy / z4_My)**z1_a return ( b_pred, h_pred, rr, rx, ry, z1_a, z2_N, z3_Mz, z4_My, SF ) # 3) Gradio UI 정의 inputs = [ gr.Number(label="f_ck (MPa) 범위: 30,35,40,45,50", value=40), gr.Number(label="f_yk (MPa) 범위: 400, 500, 600", value=600), gr.Number(label="N_Ed (N) 범위: 200e3 ~ 800e3", value=455000), gr.Number(label="M_Edz (N·mm) 범위: 50e6 ~ 200e6", value=186200000), gr.Number(label="M_Edy (N·mm) 범위: 50e6 ~ 200e6", value=126100000), gr.Number(label="cover (mm) 고정", value=50), gr.Number(label="rebar_dia (mm) 범위: 16,20,25,32,40", value=20), gr.Number(label="Safety Factor", value=0.9, precision=2) ] outputs = [ gr.Number(label="b_pred (mm)"), gr.Number(label="h_pred (mm)"), gr.Number(label="reinforcement_ratio"), gr.Number(label="rebar_x (개)"), gr.Number(label="rebar_y (개)"), gr.Number(label="exponent a"), gr.Number(label="N_Rd (N)"), gr.Number(label="M_Rdz (N·mm)"), gr.Number(label="M_Rdy (N·mm)"), gr.Number(label="SF") ] demo = gr.Interface( fn=predict, inputs=inputs, outputs=outputs, title="🔧 RC 기둥 단면 설계", description="Eurocode 2 기반 ML 모델" ) if __name__ == "__main__": demo.launch()