Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pytube
|
3 |
-
from transformers import pipeline
|
4 |
-
import os
|
5 |
import re
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def extract_video_id(url):
|
12 |
"""Extract video ID from various YouTube URL formats"""
|
13 |
patterns = [
|
14 |
r'(?:v=|\/)([0-9A-Za-z_-]{11}).*',
|
15 |
r'(?:embed\/)([0-9A-Za-z_-]{11})',
|
16 |
-
r'(?:v\/)([0-9A-Za-z_-]{11})'
|
|
|
17 |
]
|
18 |
for pattern in patterns:
|
19 |
match = re.search(pattern, url)
|
@@ -21,105 +34,317 @@ def extract_video_id(url):
|
|
21 |
return match.group(1)
|
22 |
return None
|
23 |
|
24 |
-
def
|
|
|
25 |
try:
|
26 |
-
#
|
27 |
-
|
28 |
-
os.remove("audio.mp4")
|
29 |
-
|
30 |
-
# Create YouTube object with error handling
|
31 |
-
yt = pytube.YouTube(url, use_oauth=False, allow_oauth_cache=False)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
if not audio_streams:
|
36 |
-
# Fallback to any audio stream
|
37 |
-
audio_streams = yt.streams.filter(only_audio=True)
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
if os.path.exists(audio_file):
|
53 |
-
os.remove(audio_file)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
# Split transcript into chunks if too long
|
63 |
-
words = transcript.split()
|
64 |
-
chunks = [' '.join(words[i:i+200]) for i in range(0, len(words), 200)]
|
65 |
summaries = []
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
except pytube.exceptions.RegexMatchError:
|
86 |
-
return "โ Error: Invalid YouTube URL", "Please check the URL format", "No summary available"
|
87 |
-
except pytube.exceptions.VideoUnavailable:
|
88 |
-
return "โ Error: Video unavailable", "Video may be private or deleted", "No summary available"
|
89 |
except Exception as e:
|
90 |
-
return f"
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
with gr.Row():
|
98 |
-
with gr.Column():
|
99 |
url_input = gr.Textbox(
|
100 |
-
label="YouTube URL",
|
101 |
placeholder="https://www.youtube.com/watch?v=...",
|
102 |
-
lines=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
-
btn = gr.Button("๐ Summarize Video", variant="primary")
|
105 |
|
|
|
106 |
with gr.Row():
|
107 |
with gr.Column():
|
108 |
-
|
|
|
109 |
with gr.Column():
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
|
|
115 |
|
116 |
-
# Add examples
|
117 |
gr.Examples(
|
118 |
examples=[
|
119 |
-
["https://www.youtube.com/watch?v=dQw4w9WgXcQ"],
|
|
|
120 |
],
|
121 |
-
inputs=url_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
|
|
|
124 |
if __name__ == "__main__":
|
125 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import re
|
3 |
+
import requests
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
6 |
+
import torch
|
7 |
+
import gc
|
8 |
|
9 |
+
# Optimize for HuggingFace Spaces - Use smaller models and efficient loading
|
10 |
+
print("๐ Loading models for HuggingFace Spaces...")
|
11 |
+
|
12 |
+
# Use smaller, efficient models
|
13 |
+
@torch.no_grad()
|
14 |
+
def load_summarizer():
|
15 |
+
model_name = "facebook/bart-large-cnn"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
18 |
+
return pipeline("summarization", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
19 |
+
|
20 |
+
# Initialize summarizer
|
21 |
+
summarizer = load_summarizer()
|
22 |
|
23 |
def extract_video_id(url):
|
24 |
"""Extract video ID from various YouTube URL formats"""
|
25 |
patterns = [
|
26 |
r'(?:v=|\/)([0-9A-Za-z_-]{11}).*',
|
27 |
r'(?:embed\/)([0-9A-Za-z_-]{11})',
|
28 |
+
r'(?:v\/)([0-9A-Za-z_-]{11})',
|
29 |
+
r'(?:youtu\.be\/)([0-9A-Za-z_-]{11})'
|
30 |
]
|
31 |
for pattern in patterns:
|
32 |
match = re.search(pattern, url)
|
|
|
34 |
return match.group(1)
|
35 |
return None
|
36 |
|
37 |
+
def get_youtube_transcript(video_id):
|
38 |
+
"""Get transcript using YouTube Transcript API - Most reliable for HF Spaces"""
|
39 |
try:
|
40 |
+
# Priority order for languages (Hindi, English variants)
|
41 |
+
language_codes = ['hi', 'en', 'en-IN', 'en-US', 'en-GB']
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
transcript_data = None
|
44 |
+
used_language = None
|
|
|
|
|
|
|
45 |
|
46 |
+
# Try each language
|
47 |
+
for lang_code in language_codes:
|
48 |
+
try:
|
49 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id, languages=[lang_code])
|
50 |
+
transcript_data = transcript_list
|
51 |
+
used_language = lang_code
|
52 |
+
break
|
53 |
+
except:
|
54 |
+
continue
|
55 |
|
56 |
+
# If specific languages fail, try auto-generated
|
57 |
+
if not transcript_data:
|
58 |
+
try:
|
59 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
60 |
+
transcript_data = transcript_list
|
61 |
+
used_language = "auto-detected"
|
62 |
+
except Exception as e:
|
63 |
+
return None, f"No transcript available: {str(e)}"
|
64 |
|
65 |
+
# Process transcript
|
66 |
+
if transcript_data:
|
67 |
+
transcript_text = ' '.join([item['text'].replace('\n', ' ') for item in transcript_data])
|
68 |
+
# Clean up common transcript artifacts
|
69 |
+
transcript_text = re.sub(r'\[.*?\]', '', transcript_text) # Remove [Music], [Applause] etc
|
70 |
+
transcript_text = re.sub(r'\s+', ' ', transcript_text).strip() # Clean whitespace
|
71 |
+
|
72 |
+
return transcript_text, f"Transcript found in: {used_language}"
|
73 |
|
74 |
+
return None, "No transcript data found"
|
|
|
|
|
75 |
|
76 |
+
except Exception as e:
|
77 |
+
return None, f"Transcript API Error: {str(e)}"
|
78 |
+
|
79 |
+
def chunk_text_for_summarization(text, max_chunk_size=800):
|
80 |
+
"""Split text into chunks for summarization"""
|
81 |
+
sentences = text.replace('เฅค', '.').split('.') # Handle Hindi sentences
|
82 |
+
chunks = []
|
83 |
+
current_chunk = ""
|
84 |
+
|
85 |
+
for sentence in sentences:
|
86 |
+
sentence = sentence.strip()
|
87 |
+
if not sentence:
|
88 |
+
continue
|
89 |
+
|
90 |
+
# Check if adding this sentence would exceed limit
|
91 |
+
if len(current_chunk) + len(sentence) + 1 < max_chunk_size:
|
92 |
+
current_chunk += sentence + ". "
|
93 |
+
else:
|
94 |
+
if current_chunk:
|
95 |
+
chunks.append(current_chunk.strip())
|
96 |
+
current_chunk = sentence + ". "
|
97 |
+
|
98 |
+
# Add the last chunk
|
99 |
+
if current_chunk:
|
100 |
+
chunks.append(current_chunk.strip())
|
101 |
+
|
102 |
+
return chunks
|
103 |
+
|
104 |
+
def summarize_text_optimized(text):
|
105 |
+
"""Optimized summarization for HuggingFace Spaces"""
|
106 |
+
if not text or len(text.strip()) < 100:
|
107 |
+
return "Text too short to summarize (minimum 100 characters required)"
|
108 |
+
|
109 |
+
try:
|
110 |
+
# Clean memory before processing
|
111 |
+
if torch.cuda.is_available():
|
112 |
+
torch.cuda.empty_cache()
|
113 |
+
gc.collect()
|
114 |
|
115 |
+
# For very long texts, chunk them
|
116 |
+
if len(text) > 1500:
|
117 |
+
chunks = chunk_text_for_summarization(text, max_chunk_size=900)
|
|
|
|
|
|
|
118 |
summaries = []
|
119 |
|
120 |
+
# Process first 3 chunks to avoid timeout
|
121 |
+
for i, chunk in enumerate(chunks[:3]):
|
122 |
+
if len(chunk.strip()) < 50:
|
123 |
+
continue
|
124 |
+
|
125 |
+
try:
|
126 |
+
summary = summarizer(
|
127 |
+
chunk,
|
128 |
+
max_length=120,
|
129 |
+
min_length=30,
|
130 |
+
do_sample=False,
|
131 |
+
num_beams=2, # Reduced for speed
|
132 |
+
length_penalty=1.0
|
133 |
+
)[0]["summary_text"]
|
134 |
+
summaries.append(summary)
|
135 |
+
except Exception as chunk_error:
|
136 |
+
print(f"Error processing chunk {i}: {chunk_error}")
|
137 |
+
continue
|
138 |
|
139 |
+
if summaries:
|
140 |
+
combined_summary = " ".join(summaries)
|
141 |
+
# If combined summary is still too long, summarize it again
|
142 |
+
if len(combined_summary) > 600:
|
143 |
+
try:
|
144 |
+
final_summary = summarizer(
|
145 |
+
combined_summary,
|
146 |
+
max_length=200,
|
147 |
+
min_length=80,
|
148 |
+
do_sample=False,
|
149 |
+
num_beams=2
|
150 |
+
)[0]["summary_text"]
|
151 |
+
return final_summary
|
152 |
+
except:
|
153 |
+
return combined_summary
|
154 |
+
return combined_summary
|
155 |
+
else:
|
156 |
+
return "Could not generate summary from chunks"
|
157 |
else:
|
158 |
+
# For shorter texts, direct summarization
|
159 |
+
summary = summarizer(
|
160 |
+
text,
|
161 |
+
max_length=150,
|
162 |
+
min_length=50,
|
163 |
+
do_sample=False,
|
164 |
+
num_beams=2,
|
165 |
+
length_penalty=1.0
|
166 |
+
)[0]["summary_text"]
|
167 |
+
return summary
|
168 |
+
|
|
|
|
|
|
|
|
|
169 |
except Exception as e:
|
170 |
+
return f"Summarization error: {str(e)}"
|
171 |
|
172 |
+
def process_youtube_video(url):
|
173 |
+
"""Main processing function optimized for HuggingFace Spaces"""
|
174 |
+
|
175 |
+
# Input validation
|
176 |
+
if not url or not url.strip():
|
177 |
+
return "โ Please enter a YouTube URL", "", "No summary available"
|
178 |
+
|
179 |
+
# Extract video ID
|
180 |
+
video_id = extract_video_id(url.strip())
|
181 |
+
if not video_id:
|
182 |
+
return "โ Invalid YouTube URL format", "Please check the URL format", "No summary available"
|
183 |
+
|
184 |
+
# Update progress
|
185 |
+
progress_msg = "๐ Extracting video transcript..."
|
186 |
+
|
187 |
+
# Get transcript
|
188 |
+
transcript, status = get_youtube_transcript(video_id)
|
189 |
+
|
190 |
+
if not transcript:
|
191 |
+
return (
|
192 |
+
"โ Could not extract transcript",
|
193 |
+
f"Status: {status}\n\nThis video might not have captions/subtitles available.",
|
194 |
+
"Cannot generate summary without transcript"
|
195 |
+
)
|
196 |
+
|
197 |
+
# Generate summary
|
198 |
+
progress_msg = "๐ค Generating AI summary..."
|
199 |
+
summary = summarize_text_optimized(transcript)
|
200 |
+
|
201 |
+
# Create video embed
|
202 |
+
embed_html = f'''
|
203 |
+
<div style="text-align: center;">
|
204 |
+
<iframe width="560" height="315"
|
205 |
+
src="https://www.youtube.com/embed/{video_id}"
|
206 |
+
frameborder="0"
|
207 |
+
allowfullscreen
|
208 |
+
style="max-width: 100%; border-radius: 10px;">
|
209 |
+
</iframe>
|
210 |
+
</div>
|
211 |
+
'''
|
212 |
+
|
213 |
+
# Format transcript info
|
214 |
+
transcript_info = f"""๐ Processing Status: โ
Success
|
215 |
+
๐ฏ Method: YouTube Transcript API
|
216 |
+
๐ Language: {status}
|
217 |
+
๐ Transcript Length: {len(transcript)} characters
|
218 |
+
๐ Word Count: ~{len(transcript.split())} words
|
219 |
+
|
220 |
+
๐ Full Transcript:
|
221 |
+
{transcript}"""
|
222 |
+
|
223 |
+
return embed_html, transcript_info, summary
|
224 |
+
|
225 |
+
# Custom CSS for better UI
|
226 |
+
custom_css = """
|
227 |
+
#component-0 {
|
228 |
+
max-width: 900px;
|
229 |
+
margin: auto;
|
230 |
+
}
|
231 |
+
.gradio-container {
|
232 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
233 |
+
}
|
234 |
+
"""
|
235 |
+
|
236 |
+
# Create Gradio Interface optimized for HuggingFace Spaces
|
237 |
+
with gr.Blocks(css=custom_css, title="YouTube Video Summarizer", theme=gr.themes.Soft()) as demo:
|
238 |
+
gr.HTML("""
|
239 |
+
<div style="text-align: center; padding: 20px;">
|
240 |
+
<h1>๐ YouTube Video Summarizer</h1>
|
241 |
+
<p style="font-size: 18px; color: #666;">
|
242 |
+
AI-powered summarization for Hindi, Hinglish & English videos
|
243 |
+
</p>
|
244 |
+
<p style="color: #888;">
|
245 |
+
Optimized for HuggingFace Spaces โข Uses YouTube Transcript API
|
246 |
+
</p>
|
247 |
+
</div>
|
248 |
+
""")
|
249 |
|
250 |
with gr.Row():
|
251 |
+
with gr.Column(scale=2):
|
252 |
url_input = gr.Textbox(
|
253 |
+
label="๐บ YouTube URL",
|
254 |
placeholder="https://www.youtube.com/watch?v=...",
|
255 |
+
lines=1,
|
256 |
+
info="Paste any YouTube video URL here"
|
257 |
+
)
|
258 |
+
|
259 |
+
with gr.Column(scale=1):
|
260 |
+
submit_btn = gr.Button(
|
261 |
+
"๐ Summarize Video",
|
262 |
+
variant="primary",
|
263 |
+
size="lg"
|
264 |
)
|
|
|
265 |
|
266 |
+
# Results section
|
267 |
with gr.Row():
|
268 |
with gr.Column():
|
269 |
+
video_embed = gr.HTML(label="๐บ Video Player")
|
270 |
+
|
271 |
with gr.Column():
|
272 |
+
summary_output = gr.Textbox(
|
273 |
+
label="๐ AI Summary",
|
274 |
+
lines=8,
|
275 |
+
max_lines=12,
|
276 |
+
info="AI-generated summary of the video content"
|
277 |
+
)
|
278 |
+
|
279 |
+
# Expandable transcript section
|
280 |
+
with gr.Accordion("๐ Full Transcript & Details", open=False):
|
281 |
+
transcript_output = gr.Textbox(
|
282 |
+
label="Complete Transcript",
|
283 |
+
lines=15,
|
284 |
+
max_lines=25,
|
285 |
+
info="Full video transcript with processing details"
|
286 |
+
)
|
287 |
|
288 |
+
# Examples section
|
289 |
+
gr.HTML("<h3 style='margin-top: 30px;'>๐ฏ Try these examples:</h3>")
|
290 |
|
|
|
291 |
gr.Examples(
|
292 |
examples=[
|
293 |
+
["https://www.youtube.com/watch?v=dQw4w9WgXcQ"],
|
294 |
+
["https://youtu.be/dQw4w9WgXcQ"],
|
295 |
],
|
296 |
+
inputs=url_input,
|
297 |
+
label="Sample URLs"
|
298 |
+
)
|
299 |
+
|
300 |
+
# Info section
|
301 |
+
with gr.Accordion("โน๏ธ How it works", open=False):
|
302 |
+
gr.Markdown("""
|
303 |
+
### ๐ง How this tool works:
|
304 |
+
|
305 |
+
1. **Extract Video ID**: Parses the YouTube URL to get the video identifier
|
306 |
+
2. **Fetch Transcript**: Uses YouTube Transcript API to get captions/subtitles
|
307 |
+
3. **AI Summarization**: Processes text through BART model for intelligent summarization
|
308 |
+
4. **Multi-language Support**: Handles Hindi, Hinglish, and English content
|
309 |
+
|
310 |
+
### ๐ Supported Languages:
|
311 |
+
- ๐ฎ๐ณ **Hindi**: Full support for Hindi captions
|
312 |
+
- ๐ **Hinglish**: Mixed Hindi-English content
|
313 |
+
- ๐บ๐ธ **English**: All English variants
|
314 |
+
|
315 |
+
### โก Optimizations for HuggingFace Spaces:
|
316 |
+
- Efficient model loading with memory management
|
317 |
+
- Chunked processing for long videos
|
318 |
+
- GPU acceleration when available
|
319 |
+
- Automatic text cleanup and formatting
|
320 |
+
|
321 |
+
### โ ๏ธ Limitations:
|
322 |
+
- Requires videos to have captions/subtitles
|
323 |
+
- Processing time depends on transcript length
|
324 |
+
- Very long videos are chunked to prevent timeouts
|
325 |
+
""")
|
326 |
+
|
327 |
+
# Event handlers
|
328 |
+
submit_btn.click(
|
329 |
+
fn=process_youtube_video,
|
330 |
+
inputs=[url_input],
|
331 |
+
outputs=[video_embed, transcript_output, summary_output]
|
332 |
+
)
|
333 |
+
|
334 |
+
url_input.submit(
|
335 |
+
fn=process_youtube_video,
|
336 |
+
inputs=[url_input],
|
337 |
+
outputs=[video_embed, transcript_output, summary_output]
|
338 |
)
|
339 |
|
340 |
+
# Launch configuration for HuggingFace Spaces
|
341 |
if __name__ == "__main__":
|
342 |
+
demo.queue(concurrency_count=2) # Limit concurrent users for stability
|
343 |
+
demo.launch(
|
344 |
+
server_name="0.0.0.0",
|
345 |
+
server_port=7860,
|
346 |
+
share=False, # Don't need share link in HF Spaces
|
347 |
+
debug=False, # Disable debug in production
|
348 |
+
enable_queue=True,
|
349 |
+
show_error=True
|
350 |
+
)
|