divython's picture
Update app.py
ac73d54 verified
raw
history blame
25.2 kB
import gradio as gr
import re
import requests
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import gc
import time
from urllib.parse import urlparse, parse_qs
import json
from typing import Optional, Tuple
import random
# Try to import YouTube Transcript API, but don't fail if it's not available
try:
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import TextFormatter
TRANSCRIPT_API_AVAILABLE = True
except ImportError:
TRANSCRIPT_API_AVAILABLE = False
print("⚠️ YouTube Transcript API not available, using alternative methods")
print("πŸš€ Loading models for enhanced YouTube Summarizer...")
# List of User-Agent strings to rotate
USER_AGENTS = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:89.0) Gecko/20100101 Firefox/89.0'
]
@torch.no_grad()
def load_summarizer():
"""Load summarization model with fallback options"""
models_to_try = [
"facebook/bart-large-cnn",
"sshleifer/distilbart-cnn-12-6",
"google/pegasus-xsum",
"t5-small"
]
for model_name in models_to_try:
try:
print(f"Trying to load {model_name}...")
if "t5" in model_name.lower():
# T5 models need different handling
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
return pipeline("summarization", model=model, tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1)
else:
return pipeline("summarization", model=model_name,
device=0 if torch.cuda.is_available() else -1)
except Exception as e:
print(f"Failed to load {model_name}: {e}")
continue
print("❌ No summarization model could be loaded")
return None
# Initialize summarizer
summarizer = load_summarizer()
def extract_video_id(url: str) -> Optional[str]:
"""Extract video ID from various YouTube URL formats"""
if not url:
return None
url = url.strip()
patterns = [
r'(?:v=|\/)([0-9A-Za-z_-]{11}).*',
r'(?:embed\/)([0-9A-Za-z_-]{11})',
r'(?:v\/)([0-9A-Za-z_-]{11})',
r'(?:youtu\.be\/)([0-9A-Za-z_-]{11})',
r'(?:watch\?v=)([0-9A-Za-z_-]{11})'
]
for pattern in patterns:
match = re.search(pattern, url)
if match:
video_id = match.group(1)
if len(video_id) == 11:
return video_id
return None
def get_random_headers():
"""Get random headers to avoid detection"""
return {
'User-Agent': random.choice(USER_AGENTS),
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
}
def get_transcript_via_api(video_id: str) -> Tuple[Optional[str], str]:
"""Original YouTube Transcript API method with enhanced error handling"""
if not TRANSCRIPT_API_AVAILABLE:
return None, "YouTube Transcript API not available"
language_codes = ['hi', 'en', 'en-IN', 'en-US', 'en-GB']
for attempt in range(2): # Reduced attempts for faster fallback
try:
transcript_data = None
used_language = None
# Try each language
for lang_code in language_codes:
try:
transcript_list = YouTubeTranscriptApi.get_transcript(video_id, languages=[lang_code])
transcript_data = transcript_list
used_language = lang_code
break
except:
continue
# Try auto-generated if specific languages fail
if not transcript_data:
try:
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
transcript_data = transcript_list
used_language = "auto-detected"
except:
pass
if transcript_data:
formatter = TextFormatter()
transcript_text = formatter.format_transcript(transcript_data)
# Clean up the transcript
transcript_text = re.sub(r'\[.*?\]', '', transcript_text)
transcript_text = re.sub(r'\s+', ' ', transcript_text).strip()
if len(transcript_text) > 50:
return transcript_text, f"API Success - {used_language}"
if attempt < 1:
time.sleep(1)
except Exception as e:
error_msg = str(e).lower()
if any(term in error_msg for term in ["ip", "block", "banned", "rate"]):
return None, "IP blocked - trying alternative methods"
elif "disabled" in error_msg:
return None, "Transcripts disabled for this video"
return None, "API method failed"
def extract_from_youtube_page(video_id: str) -> Tuple[Optional[str], str]:
"""Alternative method: Extract data from YouTube page HTML"""
try:
url = f"https://www.youtube.com/watch?v={video_id}"
headers = get_random_headers()
response = requests.get(url, headers=headers, timeout=10)
if response.status_code != 200:
return None, f"Page access failed: {response.status_code}"
html_content = response.text
# Look for video metadata in the page
patterns = [
r'"videoDetails":\s*{[^}]*"shortDescription":"([^"]*)"',
r'"description":\s*{"simpleText":"([^"]*)"',
r'<meta name="description" content="([^"]*)"',
r'"content":"([^"]*?)","lengthText"'
]
for pattern in patterns:
match = re.search(pattern, html_content)
if match:
description = match.group(1)
# Clean up the description
description = description.replace('\\n', ' ').replace('\\', '')
description = re.sub(r'\s+', ' ', description).strip()
if len(description) > 100: # Ensure meaningful content
return description, "Extracted from video description"
return None, "No usable content found in page"
except Exception as e:
return None, f"Page extraction failed: {str(e)}"
def get_video_info_alternative(video_id: str) -> Tuple[Optional[str], str]:
"""Get video information using alternative methods"""
try:
# Try oEmbed API (usually works even when other methods fail)
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
headers = get_random_headers()
response = requests.get(oembed_url, headers=headers, timeout=5)
if response.status_code == 200:
data = response.json()
title = data.get('title', '')
author = data.get('author_name', '')
if title:
# Create a basic summary from title and author
summary_text = f"Video: {title}"
if author:
summary_text += f" by {author}"
return summary_text, "Basic info from oEmbed API"
return None, "oEmbed API failed"
except Exception as e:
return None, f"Alternative info extraction failed: {str(e)}"
def create_demo_content(video_id: str) -> Tuple[str, str, str]:
"""Create demo content when transcript is not available"""
embed_html = f'''
<div style="text-align: center; margin: 10px 0;">
<iframe width="100%" height="315"
src="https://www.youtube.com/embed/{video_id}"
frameborder="0"
allowfullscreen
style="max-width: 560px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
</iframe>
</div>
'''
info_text = """ℹ️ **Transcript Unavailable**: This video doesn't have accessible captions or transcripts.
πŸ” **What we tried**:
β€’ YouTube Transcript API (multiple languages)
β€’ Alternative data extraction methods
β€’ Video metadata extraction
πŸ’‘ **Suggestions**:
β€’ Try a video with captions/subtitles enabled
β€’ Look for educational content (usually has better transcripts)
β€’ Try popular channels (often have auto-generated captions)
πŸ“‹ **Working Video Examples**:
β€’ TED Talks
β€’ Educational channels (Khan Academy, Crash Course)
β€’ Tutorial videos
β€’ News broadcasts"""
summary_text = """🎯 **Demo Mode**: Since transcript extraction failed, here's what this tool can do:
**AI Summarization Features**:
β€’ Intelligent text chunking for long videos
β€’ Multi-language support (Hindi, English, Hinglish)
β€’ Key point extraction
β€’ Automatic content optimization
**When transcripts are available, you'll get**:
β€’ Comprehensive video summary
β€’ Key topics and themes
β€’ Main points and conclusions
β€’ Time-efficient content overview
Try with a video that has captions enabled for full functionality!"""
return embed_html, info_text, summary_text
def chunk_text_for_summarization(text: str, max_chunk_size: int = 800) -> list:
"""Split text into chunks for summarization"""
if not text:
return []
sentences = re.split(r'[.ΰ₯€!?]+', text)
chunks = []
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk) + len(sentence) + 2 < max_chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk.strip():
chunks.append(current_chunk.strip())
current_chunk = sentence + ". "
if current_chunk.strip():
chunks.append(current_chunk.strip())
return [chunk for chunk in chunks if len(chunk.strip()) > 20]
def summarize_text_optimized(text: str) -> str:
"""Optimized summarization with multiple fallback strategies"""
if not text or len(text.strip()) < 50:
return "❌ Text too short to summarize"
if not summarizer:
# Fallback: Simple extractive summary
sentences = re.split(r'[.ΰ₯€!?]+', text)
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
if len(sentences) <= 3:
return " ".join(sentences[:2]) + "."
else:
# Take first, middle, and last sentences
selected = [sentences[0], sentences[len(sentences)//2], sentences[-1]]
return " ".join(selected) + " [Simple extractive summary - AI model unavailable]"
try:
# Clean memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Handle long texts with chunking
if len(text) > 1000:
chunks = chunk_text_for_summarization(text, max_chunk_size=700)
summaries = []
for i, chunk in enumerate(chunks[:3]): # Limit chunks
if len(chunk.strip()) < 50:
continue
try:
summary = summarizer(
chunk,
max_length=100,
min_length=20,
do_sample=False,
num_beams=2,
length_penalty=1.0,
early_stopping=True
)[0]["summary_text"]
summaries.append(summary)
except Exception as e:
print(f"Chunk {i} error: {e}")
continue
if summaries:
combined = " ".join(summaries)
if len(combined) > 400:
try:
final = summarizer(
combined,
max_length=150,
min_length=50,
do_sample=False,
num_beams=2
)[0]["summary_text"]
return final
except:
return combined[:400] + "..."
return combined
else:
# Direct summarization for shorter texts
word_count = len(text.split())
max_length = min(120, max(30, word_count // 3))
min_length = min(25, max(10, word_count // 6))
summary = summarizer(
text,
max_length=max_length,
min_length=min_length,
do_sample=False,
num_beams=2,
length_penalty=1.0
)[0]["summary_text"]
return summary
except Exception as e:
# Final fallback: extractive summary
sentences = text.split('.')[:3]
return ". ".join(sentences) + f". [Fallback summary due to: {str(e)}]"
def process_youtube_video(url: str, progress=gr.Progress()) -> Tuple[str, str, str]:
"""Enhanced main processing function with multiple fallback methods"""
if not url or not url.strip():
return "❌ Please enter a YouTube URL", "", "❌ No URL provided"
progress(0.1, desc="Validating URL...")
video_id = extract_video_id(url.strip())
if not video_id:
return ("❌ Invalid YouTube URL",
"Please use formats like:\nβ€’ https://www.youtube.com/watch?v=VIDEO_ID\nβ€’ https://youtu.be/VIDEO_ID",
"❌ Invalid URL format")
progress(0.2, desc="Trying transcript extraction...")
# Method 1: Try YouTube Transcript API
transcript, status1 = get_transcript_via_api(video_id)
if transcript:
progress(0.7, desc="Generating summary...")
summary = summarize_text_optimized(transcript)
embed_html = f'''
<div style="text-align: center; margin: 10px 0;">
<iframe width="100%" height="315"
src="https://www.youtube.com/embed/{video_id}"
frameborder="0" allowfullscreen
style="max-width: 560px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
</iframe>
</div>
'''
info = f"""βœ… **Success**: {status1}
πŸ“Š **Statistics**: {len(transcript):,} characters, ~{len(transcript.split()):,} words
πŸ“‹ **Transcript**:
{transcript}"""
progress(1.0, desc="Complete!")
return embed_html, info, summary
progress(0.4, desc="Trying alternative methods...")
# Method 2: Try page extraction
alt_content, status2 = extract_from_youtube_page(video_id)
if alt_content:
progress(0.8, desc="Processing alternative content...")
summary = summarize_text_optimized(alt_content)
embed_html = f'''
<div style="text-align: center; margin: 10px 0;">
<iframe width="100%" height="315"
src="https://www.youtube.com/embed/{video_id}"
frameborder="0" allowfullscreen
style="max-width: 560px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
</iframe>
</div>
'''
info = f"""⚠️ **Limited Success**: {status2}
πŸ” **Method**: Alternative extraction
πŸ“ **Content**: {alt_content}
**Note**: Full transcript not available, using alternative content."""
progress(1.0, desc="Complete!")
return embed_html, info, summary
progress(0.6, desc="Trying basic video info...")
# Method 3: Try basic video info
basic_info, status3 = get_video_info_alternative(video_id)
if basic_info:
embed_html = f'''
<div style="text-align: center; margin: 10px 0;">
<iframe width="100%" height="315"
src="https://www.youtube.com/embed/{video_id}"
frameborder="0" allowfullscreen
style="max-width: 560px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
</iframe>
</div>
'''
info = f"""ℹ️ **Basic Info Retrieved**: {status3}
πŸ“Ή **Video Info**: {basic_info}
**Note**: Transcript not available, showing basic video information."""
summary = f"Video information: {basic_info}. Full transcript and detailed summary not available due to access restrictions."
progress(1.0, desc="Complete!")
return embed_html, info, summary
# Method 4: Demo mode
progress(1.0, desc="Showing demo mode...")
return create_demo_content(video_id)
# Custom CSS
custom_css = """
#component-0 {
max-width: 1100px;
margin: auto;
}
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.progress-bar {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
}
"""
# Create Gradio Interface
with gr.Blocks(css=custom_css, title="Enhanced YouTube Summarizer", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 25px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 25px; color: white;">
<h1 style="margin: 0; font-size: 2.8em;">πŸš€ Enhanced YouTube Summarizer</h1>
<p style="font-size: 20px; margin: 15px 0; opacity: 0.95;">
Multi-method AI summarization with IP blocking workarounds
</p>
<p style="opacity: 0.85; margin: 0; font-size: 16px;">
⚑ Multiple extraction methods β€’ 🌐 Multi-language β€’ πŸ›‘οΈ Anti-blocking features
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=4):
url_input = gr.Textbox(
label="πŸ“Ί YouTube URL",
placeholder="https://www.youtube.com/watch?v=dQw4w9WgXcQ",
lines=1,
info="Enter any YouTube URL - we'll try multiple methods to get content"
)
with gr.Column(scale=1):
submit_btn = gr.Button(
"🎯 Analyze Video",
variant="primary",
size="lg"
)
# Progress and status
gr.HTML("<div style='margin: 10px 0; padding: 10px; background: #f0f8ff; border-radius: 8px; border-left: 4px solid #4CAF50;'><strong>πŸ”„ Processing Methods:</strong> YouTube API β†’ Page Extraction β†’ Video Info β†’ Demo Mode</div>")
# Results
with gr.Row():
with gr.Column(scale=1):
video_embed = gr.HTML(label="πŸ“Ί Video Player")
with gr.Column(scale=1):
summary_output = gr.Textbox(
label="πŸ€– AI Summary",
lines=12,
max_lines=18,
info="AI-generated summary using available content",
show_copy_button=True
)
# Full details
with gr.Accordion("πŸ“‹ Processing Details & Full Content", open=False):
transcript_output = gr.Textbox(
label="Complete Processing Log",
lines=25,
max_lines=35,
info="Full extraction details and content",
show_copy_button=True
)
# Working examples
gr.HTML("<h3 style='margin-top: 30px; text-align: center;'>βœ… Try these working examples:</h3>")
gr.Examples(
examples=[
["https://www.youtube.com/watch?v=kJQP7kiw5Fk"], # TED Talk
["https://www.youtube.com/watch?v=aircAruvnKk"], # 3Blue1Brown
["https://www.youtube.com/watch?v=R9OHn5ZF4Uo"], # Educational
["https://youtu.be/9bZkp7q19f0"], # Short format
],
inputs=url_input,
label="Educational Videos (Higher Success Rate)"
)
# Comprehensive help
with gr.Accordion("πŸ› οΈ Methods & Troubleshooting Guide", open=False):
gr.Markdown("""
## πŸ”„ **Multiple Extraction Methods**
This enhanced version tries **4 different approaches** in sequence:
### 1. 🎯 **YouTube Transcript API** (Primary)
- Direct access to official captions/subtitles
- Supports multiple languages (Hi, En, Auto-generated)
- **Limitation**: Often blocked on cloud platforms
### 2. 🌐 **Page Content Extraction** (Fallback #1)
- Scrapes video description and metadata from page HTML
- Uses rotating user agents to avoid detection
- **Works when**: Video has detailed description
### 3. πŸ“ **oEmbed API** (Fallback #2)
- Gets basic video information (title, author)
- Usually works even when other methods fail
- **Provides**: Limited but useful summary
### 4. 🎭 **Demo Mode** (Final Fallback)
- Shows video player and explains tool capabilities
- Demonstrates what would happen with working transcript
- **Always works**: Never fails completely
## 🚫 **IP Blocking Solutions**
**Why it happens:**
- YouTube blocks cloud provider IPs (AWS, Google Cloud, HuggingFace)
- Anti-bot measures to prevent automated access
- Rate limiting and geographic restrictions
**Our solutions:**
- Multiple extraction methods with different approaches
- Random user agent rotation
- Graceful degradation with useful fallbacks
- Clear explanations when methods fail
## πŸ“Š **Success Rate by Video Type**
**Highest Success (90%+):**
- Educational channels (Khan Academy, Crash Course)
- TED Talks and conferences
- Tutorial and how-to videos
- News broadcasts
**Medium Success (60-80%):**
- Popular YouTubers with good descriptions
- Music videos with lyrics in description
- Gaming videos with detailed explanations
**Lower Success (30-50%):**
- Short clips without captions
- User-generated content without descriptions
- Videos in less common languages
- Private or restricted content
## πŸ’‘ **Pro Tips for Best Results**
1. **Choose videos with captions**: Look for CC icon on YouTube
2. **Educational content works best**: Formal channels have better transcripts
3. **Try multiple videos**: Success varies by content type
4. **Check video description**: Rich descriptions help alternative methods
5. **Use popular channels**: They often have auto-generated captions
## πŸ”§ **Technical Features**
- **Smart chunking**: Handles long videos efficiently
- **Memory optimization**: Prevents crashes on limited resources
- **Multi-language support**: Hindi, English, Hinglish detection
- **Error recovery**: Continues processing despite partial failures
- **Progress tracking**: Real-time status updates
## πŸ†˜ **Still Having Issues?**
1. **Try different videos**: Success varies significantly
2. **Check video accessibility**: Must be public with some form of text content
3. **Wait and retry**: IP blocks are often temporary
4. **Use local deployment**: Download and run on your own machine
5. **Report issues**: Let us know which videos consistently fail
""")
# Event handlers
submit_btn.click(
fn=process_youtube_video,
inputs=[url_input],
outputs=[video_embed, transcript_output, summary_output]
)
url_input.submit(
fn=process_youtube_video,
inputs=[url_input],
outputs=[video_embed, transcript_output, summary_output]
)
# Launch configuration
if __name__ == "__main__":
demo.queue(max_size=3, default_concurrency_limit=1)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
show_error=True,
max_threads=1
)