dippatel1994 commited on
Commit
3bf4f98
·
verified ·
1 Parent(s): 05ff515

Added app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ from transformers import pipeline, BertTokenizer
4
+
5
+ # Function to generate answers using the BERT model
6
+ def generate_answers(questions, paper_link):
7
+ # Download the research paper
8
+ response = requests.get(paper_link)
9
+ paper_text = response.text
10
+
11
+ # Initialize the BERT tokenizer
12
+ tokenizer = BertTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
13
+
14
+ # Initialize the question-answering pipeline
15
+ model = pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
16
+
17
+ # Generate answers for each question
18
+ answers = []
19
+ for question in questions.split(","):
20
+ inputs = tokenizer(question.strip(), paper_text, return_tensors="pt")
21
+ answer = model(**inputs)
22
+ answers.append(answer['answer'])
23
+
24
+ return '\n\n'.join(answers)
25
+
26
+ # Streamlit app
27
+ st.title("Research Paper Question Answering")
28
+
29
+ questions = st.text_input("Enter comma-separated questions:")
30
+ paper_link = st.text_input("Enter the link to the research paper (Arxiv link):")
31
+
32
+ if st.button("Generate Answers"):
33
+ if not (questions and paper_link):
34
+ st.warning("Please provide both questions and the paper link.")
35
+ else:
36
+ with st.spinner("Generating answers..."):
37
+ answers = generate_answers(questions, paper_link)
38
+ st.success("Answers generated successfully!")
39
+ st.text_area("Generated Answers", answers)