File size: 13,428 Bytes
f4bd48c 7920feb f4bd48c ec3f4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
---
title: "Optimized Diffusers Code"
emoji: 🔥
colorFrom: purple
colorTo: gray
sdk: gradio
sdk_version: 5.31.0
app_file: app.py
pinned: false
short_description: 'Optimize Diffusers Code on your hardware.'
---
Still a WIP. Use an LLM to generate reasonable code snippets in a hardware-aware manner for Diffusers.
### Motivation
Within the Diffusers, we support a bunch of optimization techniques (refer [here](https://huggingface.co/docs/diffusers/main/en/optimization/memory), [here](https://huggingface.co/docs/diffusers/main/en/optimization/cache), and [here](https://huggingface.co/docs/diffusers/main/en/optimization/fp16)). However, it can be
daunting for our users to determine when to use what. Hence, this repository tries to take a stab
at using an LLM to generate reasonable code snippets for a given pipeline checkpoint that respects
user hardware configuration.
## Getting started
Install the requirements from `requirements.txt`.
Configure `GOOGLE_API_KEY` in the environment: `export GOOGLE_API_KEY=...`.
Then run:
```bash
python e2e_example.py
```
By default, the `e2e_example.py` script uses Flux.1-Dev, but this can be configured through the `--ckpt_id` argument.
Full usage:
```sh
usage: e2e_example.py [-h] [--ckpt_id CKPT_ID] [--gemini_model GEMINI_MODEL] [--variant VARIANT] [--enable_lossy]
options:
-h, --help show this help message and exit
--ckpt_id CKPT_ID Can be a repo id from the Hub or a local path where the checkpoint is stored.
--gemini_model GEMINI_MODEL
Gemini model to use. Choose from https://ai.google.dev/gemini-api/docs/models.
--variant VARIANT If the `ckpt_id` has variants, supply this flag to estimate compute. Example: 'fp16'.
--enable_lossy When enabled, the code will include snippets for enabling quantization.
```
## Example outputs
<details>
<summary>python e2e_example.py (ran on an H100)</summary>
````sh
System RAM: 1999.99 GB
RAM Category: large
GPU VRAM: 79.65 GB
VRAM Category: large
current_generate_prompt='\npipeline_loading_memory_GB: 31.424\navailable_system_ram_GB: 1999.9855346679688\navailable_gpu_vram_GB: 79.6474609375\nenable_lossy_outputs: False\nenable_torch_compile: True\n'
Sending request to Gemini...
```python
from diffusers import DiffusionPipeline
import torch
# User-provided information:
# pipeline_loading_memory_GB: 31.424
# available_system_ram_GB: 1999.9855346679688 (Large RAM)
# available_gpu_vram_GB: 79.6474609375 (Large VRAM)
# enable_lossy_outputs: False
# enable_torch_compile: True
# --- Configuration based on user needs and system capabilities ---
# Placeholder for the actual checkpoint ID
# Please replace this with your desired model checkpoint ID.
CKPT_ID = "black-forest-labs/FLUX.1-dev"
# Determine dtype. bfloat16 is generally recommended for performance on compatible GPUs.
# Ensure your GPU supports bfloat16 for optimal performance.
dtype = torch.bfloat16
# 1. Pipeline Loading and Device Placement:
# Available VRAM (79.64 GB) is significantly greater than the pipeline's loading memory (31.42 GB).
# Therefore, the entire pipeline can comfortably fit and run on the GPU.
print(f"Loading pipeline '{CKPT_ID}' with {dtype} precision...")
pipe = DiffusionPipeline.from_pretrained(CKPT_ID, torch_dtype=dtype)
print("Moving pipeline to CUDA (GPU) as VRAM is sufficient...")
pipe = pipe.to("cuda")
# 2. Quantization:
# User specified `enable_lossy_outputs: False`, so no quantization is applied.
print("Quantization is NOT applied as per user's preference for lossless outputs.")
# 3. Torch Compile:
# User specified `enable_torch_compile: True`.
# Since no offloading was applied (the entire model is on GPU), we can use `fullgraph=True`
# for potentially greater performance benefits.
print("Applying torch.compile() to the transformer for accelerated inference...")
# The transformer is typically the most compute-intensive part of the diffusion pipeline.
# Compiling it can lead to significant speedups.
pipe.transformer.compile(fullgraph=True)
# --- Inference ---
print("Starting inference...")
prompt = "photo of a dog sitting beside a river, high quality, 4k"
image = pipe(prompt).images[0]
print("Inference completed. Displaying image.")
# Save or display the image
image.save("generated_image.png")
print("Image saved as generated_image.png")
# You can also display the image directly if running in an environment that supports it
# image.show()
```
````
<br>
</details>
<br>
<details>
<summary>python e2e_example.py --enable_lossy</summary>
````sh
System RAM: 1999.99 GB
RAM Category: large
GPU VRAM: 79.65 GB
VRAM Category: large
current_generate_prompt='\npipeline_loading_memory_GB: 31.424\navailable_system_ram_GB: 1999.9855346679688\navailable_gpu_vram_GB: 79.6474609375\nenable_lossy_outputs: True\nenable_torch_compile: True\n'
Sending request to Gemini...
```python
import torch
from diffusers import DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
import os
# --- User-provided information and derived constants ---
# Checkpoint ID (assuming a placeholder since it was not provided in the user input)
# Using the example CKPT_ID from the problem description
CKPT_ID = "black-forest-labs/FLUX.1-dev"
# Derived from available_gpu_vram_GB (79.64 GB) and pipeline_loading_memory_GB (31.424 GB)
# VRAM is ample to load the entire pipeline
use_cuda_direct_load = True
# Derived from enable_lossy_outputs (True)
enable_quantization = True
# Derived from enable_torch_compile (True)
enable_torch_compile = True
# --- Inference Code ---
print(f"Loading pipeline: {CKPT_ID}")
# 1. Quantization Configuration (since enable_lossy_outputs is True)
quant_config = None
if enable_quantization:
# Default to bitsandbytes 4-bit as per guidance
print("Enabling bitsandbytes 4-bit quantization for 'transformer' component.")
quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"},
# For FLUX.1-dev, the main generative component is typically 'transformer'.
# For other pipelines, you might include 'unet', 'text_encoder', 'text_encoder_2', etc.
components_to_quantize=["transformer"]
)
# 2. Load the Diffusion Pipeline
# Use bfloat16 for better performance and modern GPU compatibility
pipe = DiffusionPipeline.from_pretrained(
CKPT_ID,
torch_dtype=torch.bfloat16,
quantization_config=quant_config if enable_quantization else None
)
# 3. Move Pipeline to GPU (since VRAM is ample)
if use_cuda_direct_load:
print("Moving the entire pipeline to CUDA (GPU).")
pipe = pipe.to("cuda")
# 4. Apply torch.compile() (since enable_torch_compile is True)
if enable_torch_compile:
print("Applying torch.compile() for speedup.")
# This setting is beneficial when bitsandbytes is used
torch._dynamo.config.capture_dynamic_output_shape_ops = True
# Since no offloading is applied (model fits fully in VRAM), use fullgraph=True
# The primary component for compilation in FLUX.1-dev is 'transformer'
print("Compiling pipe.transformer with fullgraph=True.")
pipe.transformer = torch.compile(pipe.transformer, fullgraph=True)
# 5. Perform Inference
print("Starting image generation...")
prompt = "photo of a dog sitting beside a river"
num_inference_steps = 28 # A reasonable number of steps for good quality
# Ensure all inputs are on the correct device for inference after compilation
with torch.no_grad():
image = pipe(prompt, num_inference_steps=num_inference_steps).images[0]
print("Image generation complete.")
# Save or display the image
output_path = "generated_image.png"
image.save(output_path)
print(f"Image saved to {output_path}")
```
````
</details>
<br>
When invoked from an RTX 4090, it outputs:
<details>
<summary>Expand</summary>
````sh
System RAM: 125.54 GB
RAM Category: large
GPU VRAM: 23.99 GB
VRAM Category: medium
current_generate_prompt='\npipeline_loading_memory_GB: 31.424\navailable_system_ram_GB: 125.54026794433594\navailable_gpu_vram_GB: 23.98828125\nenable_lossy_outputs: False\nenable_torch_compile: True\n'
Sending request to Gemini...
```python
import torch
from diffusers import DiffusionPipeline
import os # For creating offload directories if needed, though not directly used in this solution
# --- User-provided information (interpreted) ---
# Checkpoint ID will be a placeholder as it's not provided by the user directly in the input.
# pipeline_loading_memory_GB: 31.424 GB
# available_system_ram_GB: 125.54 GB (Categorized as "large": > 40GB)
# available_gpu_vram_GB: 23.98 GB (Categorized as "medium": > 8GB <= 24GB)
# enable_lossy_outputs: False (User prefers no quantization)
# enable_torch_compile: True (User wants to enable torch.compile)
# --- Configuration ---
# Placeholder for the actual checkpoint ID. Replace with the desired model ID.
CKPT_ID = "black-forest-labs/FLUX.1-dev" # Example from Diffusers library.
PROMPT = "photo of a dog sitting beside a river"
print(f"--- Optimizing inference for CKPT_ID: {CKPT_ID} ---")
print(f"Pipeline loading memory: {31.424} GB")
print(f"Available System RAM: {125.54} GB (Large)")
print(f"Available GPU VRAM: {23.98} GB (Medium)")
print(f"Lossy outputs (quantization): {'Disabled' if not False else 'Enabled'}")
print(f"Torch.compile: {'Enabled' if True else 'Disabled'}")
print("-" * 50)
# --- 1. Load the Diffusion Pipeline ---
# Use bfloat16 for a good balance of memory and performance.
print(f"Loading pipeline '{CKPT_ID}' with torch_dtype=torch.bfloat16...")
pipe = DiffusionPipeline.from_pretrained(CKPT_ID, torch_dtype=torch.bfloat16)
print("Pipeline loaded.")
# --- 2. Apply Memory Optimizations ---
# Analysis:
# - Pipeline memory (31.424 GB) exceeds available GPU VRAM (23.98 GB).
# - System RAM (125.54 GB) is large.
# Strategy: Use `enable_model_cpu_offload()`. This moves model components to CPU when not
# in use, swapping them to GPU on demand. This is ideal when VRAM is insufficient but system
# RAM is abundant.
print("Applying memory optimization: `pipe.enable_model_cpu_offload()`...")
pipe.enable_model_cpu_offload()
print("Model CPU offloading enabled. Components will dynamically move between CPU and GPU.")
# --- 3. Apply Speed Optimizations (torch.compile) ---
# Analysis:
# - `enable_torch_compile` is True.
# - Model offloading (`enable_model_cpu_offload`) is applied.
# Strategy: Enable torch.compile with `recompile_limit` as offloading is used.
# Do not use `fullgraph=True` when offloading is active.
print("Applying speed optimization: `torch.compile()`...")
torch._dynamo.config.recompile_limit = 1000 # Recommended when offloading is applied.
# torch._dynamo.config.capture_dynamic_output_shape_ops = True # Only for bitsandbytes, not applicable here.
# Compile the main computational component (e.g., transformer or unet).
# FLUX models primarily use a transformer. For other models, it might be `pipe.unet`.
if hasattr(pipe, "transformer"):
print("Compiling `pipe.transformer`...")
pipe.transformer.compile()
elif hasattr(pipe, "unet"):
print("Compiling `pipe.unet`...")
pipe.unet.compile()
else:
print("Warning: Neither `pipe.transformer` nor `pipe.unet` found for compilation. Skipping `torch.compile` for core component.")
print("Speed optimizations applied.")
# --- 4. Perform Inference ---
print(f"Starting image generation for prompt: '{PROMPT}'")
# The pipeline handles component swapping automatically due to `enable_model_cpu_offload()`.
image = pipe(PROMPT).images[0]
print("Image generation complete.")
# --- 5. Save or Display the Result ---
output_path = "generated_image.png"
image.save(output_path)
print(f"Generated image saved to '{output_path}'")
print("\n--- Inference process finished successfully ---")
```
````
</details>
### More outputs
<details>
<summary>"Wan-AI/Wan2.1-T2V-14B-Diffusers" with lossy outputs enabled</summary>
````sh
System RAM: 125.54 GB
RAM Category: large
GPU VRAM: 23.99 GB
VRAM Category: medium
("current_generate_prompt='\\nckpt_id: "
'Wan-AI/Wan2.1-T2V-14B-Diffusers\\npipeline_loading_memory_GB: '
'37.432\\navailable_system_ram_GB: '
'125.54026794433594\\navailable_gpu_vram_GB: '
'23.98828125\\nenable_lossy_outputs: True\\nis_fp8_supported: '
"True\\nenable_torch_compile: True\\n'")
Sending request to Gemini...
```python
from diffusers import DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
import torch
ckpt_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
quant_config = PipelineQuantizationConfig(
quant_backend="torchao",
quant_kwargs={"quant_type": "float8dq_e4m3_row"},
components_to_quantize=["transformer"]
)
pipe = DiffusionPipeline.from_pretrained(ckpt_id, quantization_config=quant_config, torch_dtype=torch.bfloat16)
# Apply model CPU offload due to VRAM constraints
pipe.enable_model_cpu_offload()
# torch.compile() configuration
torch._dynamo.config.recompile_limit = 1000
pipe.transformer.compile()
# pipe.vae.decode = torch.compile(pipe.vae.decode) # Uncomment if you want to compile VAE decode as well
prompt = "photo of a dog sitting beside a river"
# Modify the pipe call arguments as needed.
image = pipe(prompt).images[0]
# You can save the image or perform further operations here
# image.save("generated_image.png")
```
````
</details>
<small>Ran on an RTX 4090</small> |