dicksonhk commited on
Commit
0aca28b
·
1 Parent(s): d1518f3

feat: mlx-vlm support

Browse files
Files changed (2) hide show
  1. app.py +169 -28
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import os
2
  import tempfile
 
 
3
 
4
  os.environ["HF_HUB_CACHE"] = "cache"
5
  os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
@@ -15,9 +17,40 @@ from gradio_huggingfacehub_search import HuggingfaceHubSearch
15
  from apscheduler.schedulers.background import BackgroundScheduler
16
 
17
  from textwrap import dedent
 
 
 
 
 
 
 
18
 
 
19
  import mlx_lm
20
- from mlx_lm import convert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  HF_TOKEN = os.environ.get("HF_TOKEN")
23
 
@@ -30,6 +63,64 @@ QUANT_PARAMS = {
30
  "Q8": 8,
31
  }
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  def list_files_in_folder(folder_path):
34
  # List all files and directories in the specified folder
35
  all_items = os.listdir(folder_path)
@@ -48,7 +139,7 @@ def clear_hf_cache_space():
48
  scan.delete_revisions(*to_delete).execute()
49
  print("Cache has been cleared")
50
 
51
- def upload_to_hub(path, upload_repo, hf_path, oauth_token):
52
  card = ModelCard.load(hf_path, token=oauth_token.token)
53
  card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx", "mlx-my-repo"]
54
  card.data.base_model = hf_path
@@ -56,29 +147,9 @@ def upload_to_hub(path, upload_repo, hf_path, oauth_token):
56
  f"""
57
  # {upload_repo}
58
 
59
- The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to MLX format from [{hf_path}](https://huggingface.co/{hf_path}) using mlx-lm version **{mlx_lm.__version__}**.
60
-
61
- ## Use with mlx
62
-
63
- ```bash
64
- pip install mlx-lm
65
- ```
66
-
67
- ```python
68
- from mlx_lm import load, generate
69
-
70
- model, tokenizer = load("{upload_repo}")
71
-
72
- prompt="hello"
73
-
74
- if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
75
- messages = [{{"role": "user", "content": prompt}}]
76
- prompt = tokenizer.apply_chat_template(
77
- messages, tokenize=False, add_generation_prompt=True
78
- )
79
 
80
- response = generate(model, tokenizer, prompt=prompt, verbose=True)
81
- ```
82
  """
83
  )
84
  card.save(os.path.join(path, "README.md"))
@@ -101,6 +172,76 @@ def upload_to_hub(path, upload_repo, hf_path, oauth_token):
101
 
102
  print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
105
  if oauth_token.token is None:
106
  raise ValueError("You must be logged in to use MLX-my-repo")
@@ -113,9 +254,9 @@ def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
113
  with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
114
  # The target directory must not exist
115
  mlx_path = os.path.join(tmpdir, "mlx")
116
- convert(model_id, mlx_path=mlx_path, quantize=False, dtype="float16")
117
  print("Conversion done")
118
- upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token)
119
  print("Upload done")
120
  else:
121
  q_bits = QUANT_PARAMS[q_method]
@@ -123,9 +264,9 @@ def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
123
  with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
124
  # The target directory must not exist
125
  mlx_path = os.path.join(tmpdir, "mlx")
126
- convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=q_bits)
127
  print("Conversion done")
128
- upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token)
129
  print("Upload done")
130
  return (
131
  f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>',
 
1
  import os
2
  import tempfile
3
+ import importlib.util
4
+ from enum import Enum
5
 
6
  os.environ["HF_HUB_CACHE"] = "cache"
7
  os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
 
17
  from apscheduler.schedulers.background import BackgroundScheduler
18
 
19
  from textwrap import dedent
20
+ from typing import (
21
+ Callable,
22
+ Dict,
23
+ Optional,
24
+ Union,
25
+ NamedTuple,
26
+ )
27
 
28
+ import mlx.nn as nn
29
  import mlx_lm
30
+ from mlx_lm.utils import (
31
+ load_config,
32
+ get_model_path,
33
+ )
34
+ import mlx_vlm
35
+
36
+
37
+ # mlx-lm/mlx_lm/utils.py
38
+ MODEL_REMAPPING_MLX_LM = {
39
+ "mistral": "llama", # mistral is compatible with llama
40
+ "phi-msft": "phixtral",
41
+ "falcon_mamba": "mamba",
42
+ }
43
+
44
+ # mlx-vlm/mlx_vlm/utils.py
45
+ MODEL_REMAPPING_MLX_VLM = {
46
+ "llava-qwen2": "llava_bunny",
47
+ "bunny-llama": "llava_bunny",
48
+ }
49
+
50
+ MODEL_REMAPPING = {
51
+ **MODEL_REMAPPING_MLX_LM,
52
+ **MODEL_REMAPPING_MLX_VLM,
53
+ }
54
 
55
  HF_TOKEN = os.environ.get("HF_TOKEN")
56
 
 
63
  "Q8": 8,
64
  }
65
 
66
+ class RuntimeInfo(NamedTuple):
67
+ name: str
68
+ package: str
69
+ version: str
70
+ convert_fn: Callable
71
+ usage_example: Callable[[str], str]
72
+ format: str = "MLX"
73
+
74
+ class Runtime(RuntimeInfo, Enum):
75
+ MLX_LM = RuntimeInfo(
76
+ name="MLX LM",
77
+ package="mlx-lm",
78
+ version=mlx_lm.__version__,
79
+ convert_fn=mlx_lm.convert,
80
+ usage_example=lambda upload_repo: dedent(
81
+ f"""
82
+ ## Use with mlx
83
+
84
+ ```bash
85
+ pip install mlx-lm
86
+ ```
87
+
88
+ ```python
89
+ from mlx_lm import load, generate
90
+
91
+ model, tokenizer = load("{upload_repo}")
92
+
93
+ prompt="hello"
94
+
95
+ if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
96
+ messages = [{{"role": "user", "content": prompt}}]
97
+ prompt = tokenizer.apply_chat_template(
98
+ messages, tokenize=False, add_generation_prompt=True
99
+ )
100
+
101
+ response = generate(model, tokenizer, prompt=prompt, verbose=True)
102
+ ```
103
+ """
104
+ )
105
+ )
106
+ MLX_VLM = RuntimeInfo(
107
+ name="MLX-VLM",
108
+ package="mlx-vlm",
109
+ version=mlx_vlm.__version__,
110
+ convert_fn=mlx_vlm.convert,
111
+ usage_example=lambda upload_repo: dedent(
112
+ f"""
113
+ ```bash
114
+ pip install -U mlx-vlm
115
+ ```
116
+
117
+ ```bash
118
+ python -m mlx_vlm.generate --model {upload_repo} --max-tokens 100 --temp 0.0 --prompt "Describe this image." --image <path_to_image>
119
+ ```
120
+ """
121
+ )
122
+ )
123
+
124
  def list_files_in_folder(folder_path):
125
  # List all files and directories in the specified folder
126
  all_items = os.listdir(folder_path)
 
139
  scan.delete_revisions(*to_delete).execute()
140
  print("Cache has been cleared")
141
 
142
+ def upload_to_hub(path, upload_repo, hf_path, oauth_token, runtime: Runtime):
143
  card = ModelCard.load(hf_path, token=oauth_token.token)
144
  card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx", "mlx-my-repo"]
145
  card.data.base_model = hf_path
 
147
  f"""
148
  # {upload_repo}
149
 
150
+ The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to ${runtime.format} format from [{hf_path}](https://huggingface.co/{hf_path}) using ${runtime.package} version **{runtime.version}**.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
+ {runtime.usage_example(upload_repo)}
 
153
  """
154
  )
155
  card.save(os.path.join(path, "README.md"))
 
172
 
173
  print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
174
 
175
+ def convert(
176
+ hf_path: str,
177
+ mlx_path: str = "mlx_model",
178
+ quantize: bool = False,
179
+ q_group_size: int = 64,
180
+ q_bits: int = 4,
181
+ dtype: Optional[str] = None,
182
+ upload_repo: str = None,
183
+ revision: Optional[str] = None,
184
+ dequantize: bool = False,
185
+ quant_predicate: Optional[
186
+ Union[Callable[[str, nn.Module, dict], Union[bool, dict]], str]
187
+ ] = None, # mlx-lm
188
+ skip_vision: bool = False, # mlx-vlm
189
+ trust_remote_code: bool = True, # mlx-vlm
190
+ ) -> Runtime :
191
+ def mlx_lm_convert():
192
+ mlx_lm.convert(
193
+ hf_path=hf_path,
194
+ mlx_path=mlx_path,
195
+ quantize=quantize,
196
+ q_group_size=q_group_size,
197
+ q_bits=q_bits,
198
+ dtype=dtype,
199
+ upload_repo=upload_repo,
200
+ revision=revision,
201
+ dequantize=dequantize,
202
+ quant_predicate=quant_predicate,
203
+ )
204
+
205
+ def mlx_vlm_convert():
206
+ mlx_vlm.convert(
207
+ hf_path=hf_path,
208
+ mlx_path=mlx_path,
209
+ quantize=quantize,
210
+ q_group_size=q_group_size,
211
+ q_bits=q_bits,
212
+ dtype=dtype,
213
+ upload_repo=upload_repo,
214
+ revision=revision,
215
+ dequantize=dequantize,
216
+ skip_vision=skip_vision,
217
+ trust_remote_code=trust_remote_code,
218
+ )
219
+
220
+ model_path = get_model_path(hf_path, revision=revision)
221
+ config = load_config(model_path)
222
+ model_type = config["model_type"]
223
+ model_type = MODEL_REMAPPING.get(model_type, model_type)
224
+
225
+ is_lm = importlib.util.find_spec(f"mlx_lm.models.{model_type}") is not None
226
+ is_vlm = importlib.util.find_spec(f"mlx_vlm.models.{model_type}") is not None
227
+
228
+ if is_lm and (not is_vlm):
229
+ mlx_lm_convert()
230
+ runtime = Runtime.MLX_LM
231
+ elif is_vlm and (not is_lm):
232
+ mlx_vlm_convert()
233
+ runtime = Runtime.MLX_VLM
234
+ else:
235
+ # fallback in-case our MODEL_REMAPPING is outdated
236
+ try:
237
+ mlx_vlm_convert()
238
+ runtime = Runtime.MLX_VLM
239
+ except Exception as e:
240
+ mlx_lm_convert()
241
+ runtime = Runtime.MLX_LM
242
+ return runtime
243
+
244
+
245
  def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
246
  if oauth_token.token is None:
247
  raise ValueError("You must be logged in to use MLX-my-repo")
 
254
  with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
255
  # The target directory must not exist
256
  mlx_path = os.path.join(tmpdir, "mlx")
257
+ runtime = convert(model_id, mlx_path=mlx_path, quantize=False, dtype="float16")
258
  print("Conversion done")
259
+ upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token, runtime=runtime)
260
  print("Upload done")
261
  else:
262
  q_bits = QUANT_PARAMS[q_method]
 
264
  with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
265
  # The target directory must not exist
266
  mlx_path = os.path.join(tmpdir, "mlx")
267
+ runtime = convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=q_bits)
268
  print("Conversion done")
269
+ upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, oauth_token=oauth_token, runtime=runtime)
270
  print("Upload done")
271
  return (
272
  f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>',
requirements.txt CHANGED
@@ -1,6 +1,10 @@
1
  huggingface-hub
2
  hf-transfer
3
  gradio[oauth]>=4.28.0
 
4
  gradio_huggingfacehub_search==0.0.7
5
  APScheduler
6
- mlx-lm
 
 
 
 
1
  huggingface-hub
2
  hf-transfer
3
  gradio[oauth]>=4.28.0
4
+ gradio<5.0,>=4.0 # gradio-huggingfacehub-search 0.0.7 requires gradio<5.0,>=4.0
5
  gradio_huggingfacehub_search==0.0.7
6
  APScheduler
7
+ mlx-lm
8
+ mlx-vlm
9
+ torch
10
+ torchvision