Spaces:
Running
Running
Upload 6 files
Browse files- Dockerfile +49 -0
- README.md +3 -3
- app.py +332 -0
- config.json +3 -0
- gitattributes +35 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python 3.11 slim image with Debian Bookworm (newer)
|
2 |
+
FROM python:3.11-slim-bookworm
|
3 |
+
|
4 |
+
# Set working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system dependencies required by deepmost (and generally good for ML)
|
8 |
+
RUN apt-get update && \
|
9 |
+
apt-get install -y --no-install-recommends \
|
10 |
+
git \
|
11 |
+
git-lfs \
|
12 |
+
ffmpeg \
|
13 |
+
libsm6 \
|
14 |
+
libxext6 \
|
15 |
+
cmake \
|
16 |
+
rsync \
|
17 |
+
libgl1-mesa-glx \
|
18 |
+
build-essential \
|
19 |
+
&& rm -rf /var/lib/apt/lists/* \
|
20 |
+
&& git lfs install
|
21 |
+
|
22 |
+
# --- CRITICAL FIX: Create /.deepmost and set permissions ---
|
23 |
+
# Docker images usually run as root during RUN steps.
|
24 |
+
# Create the directory where deepmost wants to save its files.
|
25 |
+
RUN mkdir -p /.deepmost && \
|
26 |
+
chmod 777 /.deepmost # Give read/write/execute permissions to all for this specific folder
|
27 |
+
|
28 |
+
# Set Matplotlib cache directory
|
29 |
+
ENV MPLCONFIGDIR=/tmp/.matplotlib
|
30 |
+
|
31 |
+
|
32 |
+
# Copy requirements.txt and install Python dependencies
|
33 |
+
COPY requirements.txt .
|
34 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
35 |
+
|
36 |
+
# Copy the rest of your application code
|
37 |
+
COPY . .
|
38 |
+
|
39 |
+
# Set the PORT environment variable. Hugging Face Spaces will
|
40 |
+
# inject its own PORT value (e.g., 7860), which will override this
|
41 |
+
# if it's set. This ensures the CMD always has a value.
|
42 |
+
ENV PORT=7860
|
43 |
+
|
44 |
+
# Expose the port Flask will run on
|
45 |
+
EXPOSE ${PORT}
|
46 |
+
|
47 |
+
# Use the shell form of CMD to allow $PORT expansion
|
48 |
+
# This command will start Gunicorn and bind it to the exposed port.
|
49 |
+
CMD gunicorn --bind 0.0.0.0:${PORT} app:app --timeout 300 --workers 1
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: SalesDocSpace
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
|
|
1 |
---
|
2 |
title: SalesDocSpace
|
3 |
+
emoji: 🌖
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
---
|
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
+
from flask_cors import CORS
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
import google.api_core.exceptions
|
8 |
+
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
import google.generativeai as genai
|
12 |
+
from google.generativeai.types import GenerationConfig
|
13 |
+
|
14 |
+
print("--- Script Start: app.py ---")
|
15 |
+
|
16 |
+
# Load environment variables for local testing (Hugging Face handles secrets directly)
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
app = Flask(__name__)
|
20 |
+
|
21 |
+
# IMPORTANT: Configure CORS to allow requests from your Vercel frontend
|
22 |
+
# Replace 'https://sales-doc.vercel.app' with your actual Vercel URL.
|
23 |
+
CORS(app, resources={r"/*": {"origins": "https://sales-doc.vercel.app"}})
|
24 |
+
|
25 |
+
# --- Global Model Instances ---
|
26 |
+
sales_agent = None
|
27 |
+
gemini_model = None
|
28 |
+
gemini_api_key_status = "Not Set" # Track API key status for logs
|
29 |
+
|
30 |
+
# --- Configure API Keys & Initialize Models ---
|
31 |
+
print("\n--- Starting API Key and Model Initialization ---")
|
32 |
+
|
33 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
34 |
+
|
35 |
+
if GEMINI_API_KEY:
|
36 |
+
try:
|
37 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
38 |
+
gemini_api_key_status = "Configured"
|
39 |
+
print("Gemini API Key detected and configured.")
|
40 |
+
except Exception as e:
|
41 |
+
gemini_api_key_status = f"Configuration Failed: {e}"
|
42 |
+
print(f"ERROR: Failed to configure Gemini API: {e}")
|
43 |
+
else:
|
44 |
+
print("WARNING: GEMINI_API_KEY environment variable not found. Gemini LLM features will be disabled.")
|
45 |
+
gemini_api_key_status = "Missing"
|
46 |
+
|
47 |
+
# --- DEEPMOST IMPORT FIX ---
|
48 |
+
try:
|
49 |
+
from deepmost import sales
|
50 |
+
print("Debug Point: Successfully imported deepmost.sales module.")
|
51 |
+
except ImportError as e:
|
52 |
+
print(f"CRITICAL ERROR: Failed to import deepmost.sales module: {e}")
|
53 |
+
print("This means the 'deepmost' library is not correctly installed or its path is wrong.")
|
54 |
+
print("SalesRLAgent core model functionality will be disabled.")
|
55 |
+
sales = None # Set sales to None if import fails, to prevent NameError later
|
56 |
+
|
57 |
+
# DeepMost SalesRLAgent Core Model Initialization
|
58 |
+
print("Debug Point: Attempting to instantiate sales.Agent (core RL model).")
|
59 |
+
if sales is not None:
|
60 |
+
try:
|
61 |
+
# --- Relying on Dockerfile to make /.deepmost writable ---
|
62 |
+
# NO local_model_path argument here.
|
63 |
+
sales_agent = sales.Agent(
|
64 |
+
model_path="https://huggingface.co/DeepMostInnovations/sales-conversion-model-reinf-learning/resolve/main/sales_conversion_model.zip",
|
65 |
+
auto_download=True,
|
66 |
+
use_gpu=False
|
67 |
+
)
|
68 |
+
if sales_agent is not None:
|
69 |
+
print("Debug Point: DeepMost SalesRLAgent core model initialized successfully.")
|
70 |
+
else:
|
71 |
+
print("ERROR: DeepMost SalesRLAgent core model failed to initialize after constructor call (returned None).")
|
72 |
+
except Exception as e:
|
73 |
+
print(f"CRITICAL ERROR: DeepMost SalesRLAgent core model loading or instantiation failed.")
|
74 |
+
print(f"Error Type: {type(e).__name__}")
|
75 |
+
print(f"Error Message: {e}")
|
76 |
+
import traceback
|
77 |
+
traceback.print_exc()
|
78 |
+
sales_agent = None
|
79 |
+
print("DeepMost model initialization set to None due to error.")
|
80 |
+
else:
|
81 |
+
print("DeepMost SalesRLAgent core model instantiation skipped because 'sales' module could not be imported.")
|
82 |
+
|
83 |
+
|
84 |
+
# Gemini LLM (1.5 Flash) Initialization
|
85 |
+
print("\nDebug Point: Attempting to initialize Gemini 1.5 Flash model.")
|
86 |
+
if GEMINI_API_KEY:
|
87 |
+
try:
|
88 |
+
gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
89 |
+
# Small test call to ensure connectivity
|
90 |
+
test_response = gemini_model.generate_content("Hello.", generation_config=GenerationConfig(max_output_tokens=10))
|
91 |
+
print(f"Debug Point: Gemini 1.5 Flash test response: {test_response.text[:50]}...")
|
92 |
+
print("Debug Point: Gemini LLM (1.5 Flash) initialized successfully.")
|
93 |
+
except Exception as e:
|
94 |
+
print(f"CRITICAL ERROR: Gemini LLM (1.5 Flash) initialization failed.")
|
95 |
+
print(f"Error Type: {type(e).__name__}")
|
96 |
+
print(f"Error Message: {e}")
|
97 |
+
print("Ensure your GEMINI_API_KEY is correct and has access to Gemini 1.5 Flash.")
|
98 |
+
print("This means LLM chat functionality and enriched metrics will not work.")
|
99 |
+
import traceback
|
100 |
+
traceback.print_exc()
|
101 |
+
gemini_model = None
|
102 |
+
print(f"Gemini Model Status: {'Initialized' if gemini_model else 'Failed to Initialize'}")
|
103 |
+
else:
|
104 |
+
print("Debug Point: Skipping Gemini LLM initialization because GEMINI_API_KEY is not set.")
|
105 |
+
print("Gemini Model Status: Disabled (API Key Missing)")
|
106 |
+
|
107 |
+
print("--- Finished Model Initialization Block ---\n")
|
108 |
+
|
109 |
+
|
110 |
+
# --- Flask Routes (API Endpoints only) ---
|
111 |
+
@app.route('/analyze_conversation', methods=['POST'])
|
112 |
+
def analyze_conversation():
|
113 |
+
if sales_agent is None:
|
114 |
+
print("ERROR: API call received for analyze_conversation but sales_agent (core) is None.")
|
115 |
+
return jsonify({"error": "SalesRLAgent core model not initialized on backend. Check Space logs for DeepMost initialization errors."}), 500
|
116 |
+
|
117 |
+
try:
|
118 |
+
data = request.get_json()
|
119 |
+
if not data or 'conversation' not in data:
|
120 |
+
return jsonify({"error": "Invalid request. 'conversation' field is required."}), 400
|
121 |
+
|
122 |
+
conversation = data['conversation']
|
123 |
+
if not isinstance(conversation, list) or not all(isinstance(turn, str) for turn in conversation):
|
124 |
+
return jsonify({"error": "'conversation' must be a list of strings."}), 400
|
125 |
+
|
126 |
+
print(f"Processing /analyze_conversation for: {conversation}")
|
127 |
+
|
128 |
+
all_analysis_results = []
|
129 |
+
full_conversation_so_far = []
|
130 |
+
|
131 |
+
for i, turn_message in enumerate(conversation):
|
132 |
+
full_conversation_so_far.append(turn_message)
|
133 |
+
|
134 |
+
deepmost_analysis = sales_agent.analyze_conversation_progression(full_conversation_so_far, print_results=False)
|
135 |
+
|
136 |
+
probability = 0.0
|
137 |
+
if deepmost_analysis and len(deepmost_analysis) > 0:
|
138 |
+
probability = deepmost_analysis[-1]['probability']
|
139 |
+
|
140 |
+
llm_metrics = {}
|
141 |
+
llm_per_turn_suggestion = ""
|
142 |
+
|
143 |
+
turn_result = {
|
144 |
+
"turn": i + 1,
|
145 |
+
"speaker": turn_message.split(":")[0].strip() if ":" in turn_message else "Unknown",
|
146 |
+
"message": turn_message,
|
147 |
+
"probability": probability,
|
148 |
+
"status": "calculated",
|
149 |
+
"metrics": llm_metrics,
|
150 |
+
"llm_per_turn_suggestion": llm_per_turn_suggestion
|
151 |
+
}
|
152 |
+
all_analysis_results.append(turn_result)
|
153 |
+
|
154 |
+
print(f"Successfully processed /analyze_conversation. Returning {len(all_analysis_results)} results.")
|
155 |
+
return jsonify({"results": all_analysis_results, "llm_advice_pending": True}), 200
|
156 |
+
|
157 |
+
except Exception as e:
|
158 |
+
print(f"ERROR: Exception during /analyze_conversation: {e}")
|
159 |
+
import traceback
|
160 |
+
traceback.print_exc()
|
161 |
+
return jsonify({"error": f"An error occurred during analysis: {str(e)}"}), 500
|
162 |
+
|
163 |
+
@app.route('/get_llm_advice', methods=['POST'])
|
164 |
+
def get_llm_advice():
|
165 |
+
if gemini_model is None:
|
166 |
+
print("ERROR: LLM advice requested but Gemini LLM is not initialized or available.")
|
167 |
+
return jsonify({"points": ["LLM advice unavailable. Gemini failed to load on backend. Check Space logs or add GEMINI_API_KEY secret."]}), 500
|
168 |
+
|
169 |
+
try:
|
170 |
+
data = request.get_json()
|
171 |
+
conversation = data.get('conversation', [])
|
172 |
+
if not conversation:
|
173 |
+
return jsonify({"points": ["No conversation provided for LLM advice."]}), 400
|
174 |
+
|
175 |
+
full_convo_text = "\n".join(conversation)
|
176 |
+
advice_prompt = (
|
177 |
+
f"Analyze the entire following sales conversation:\n\n"
|
178 |
+
f"{full_convo_text}\n\n"
|
179 |
+
f"As a concise sales coach, provide actionable advice to the salesperson on how to best progress this sales call towards a successful outcome. "
|
180 |
+
f"Provide this advice as a JSON object with a single key 'points' which is an array of strings, where each string is a distinct, actionable bullet point. "
|
181 |
+
f"Do NOT include any other text outside the JSON object. Ensure the JSON is well-formed and complete."
|
182 |
+
)
|
183 |
+
print(f"Processing /get_llm_advice. Prompting Gemini: {advice_prompt[:200]}...")
|
184 |
+
try:
|
185 |
+
gemini_response = gemini_model.generate_content(
|
186 |
+
[advice_prompt],
|
187 |
+
generation_config=GenerationConfig(
|
188 |
+
response_mime_type="application/json",
|
189 |
+
response_schema={"type": "OBJECT", "properties": {"points": {"type": "ARRAY", "items": {"type": "STRING"}}}, "required": ["points"]},
|
190 |
+
max_output_tokens=300,
|
191 |
+
temperature=0.6
|
192 |
+
)
|
193 |
+
)
|
194 |
+
raw_json_string = ""
|
195 |
+
if gemini_response and gemini_response.candidates and len(gemini_response.candidates) > 0 and \
|
196 |
+
gemini_response.candidates[0].content and gemini_response.candidates[0].content.parts and \
|
197 |
+
len(gemini_response.candidates[0].content.parts) > 0:
|
198 |
+
raw_json_string = gemini_response.candidates[0].content.parts[0].text.strip()
|
199 |
+
print(f"Raw LLM JSON response: {raw_json_string}")
|
200 |
+
else:
|
201 |
+
print("WARNING: Empty or malformed LLM response for overall advice.")
|
202 |
+
return jsonify({"points": ["LLM returned an empty or malformed response. Try again or check conversation length."]}), 200
|
203 |
+
|
204 |
+
parsed_advice = {}
|
205 |
+
try:
|
206 |
+
parsed_advice = json.loads(raw_json_string)
|
207 |
+
if "points" in parsed_advice and isinstance(parsed_advice["points"], list):
|
208 |
+
print(f"Successfully parsed Gemini advice: {parsed_advice}")
|
209 |
+
return jsonify(parsed_advice), 200
|
210 |
+
else:
|
211 |
+
print(f"WARNING: LLM did not return 'points' array in structured advice: {raw_json_string}")
|
212 |
+
return jsonify({"points": ["LLM response was not structured as expected (missing 'points' array). Raw: " + raw_json_string[:100] + "..."]}), 200
|
213 |
+
except json.JSONDecodeError as json_e:
|
214 |
+
print(f"ERROR: JSON parsing error for overall advice: {json_e}. Raw string: {raw_json_string}")
|
215 |
+
return jsonify({"points": ["Error parsing LLM JSON advice. This happens with incomplete LLM responses (e.g., due to API rate limits or max tokens). Please try a shorter conversation or wait a moment. Raw response starts with: " + raw_json_string[:100] + "..."]})
|
216 |
+
except Exception as parse_e:
|
217 |
+
print(f"ERROR: General error parsing LLM JSON advice: {parse_e}. Raw string: {raw_json_string}")
|
218 |
+
return jsonify({"points": ["General error with LLM JSON parsing. Raw response starts with: " + raw_json_string[:100] + "..."]})
|
219 |
+
|
220 |
+
except google.api_core.exceptions.ResourceExhausted as quota_e:
|
221 |
+
print(f"ERROR: Quota Exceeded for LLM advice: {quota_e}")
|
222 |
+
return jsonify({"points": ["Quota Exceeded: Cannot generate overall LLM advice due to API rate limits. Please try again in a minute or two."]}), 200
|
223 |
+
except Exception as e:
|
224 |
+
print(f"ERROR: Exception generating structured Gemini advice: {e}")
|
225 |
+
import traceback
|
226 |
+
traceback.print_exc()
|
227 |
+
return jsonify({"points": [f"Error generating LLM advice: {type(e).__name__} - {e}"]}), 200
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
print(f"ERROR: An unexpected error occurred in /get_llm_advice: {e}")
|
231 |
+
import traceback
|
232 |
+
traceback.print_exc()
|
233 |
+
return jsonify({"points": [f"An unexpected error occurred: {type(e).__name__} - {e}"]}), 500
|
234 |
+
|
235 |
+
|
236 |
+
@app.route('/chat_llm', methods=['POST'])
|
237 |
+
def chat_llm():
|
238 |
+
if gemini_model is None:
|
239 |
+
print("ERROR: Gemini LLM instance is not initialized or available for chat.")
|
240 |
+
return jsonify({"error": "LLM chat functionality unavailable. Gemini failed to load."}), 500
|
241 |
+
|
242 |
+
try:
|
243 |
+
data = request.get_json()
|
244 |
+
user_message = data.get('message', '')
|
245 |
+
if not user_message:
|
246 |
+
return jsonify({"error": "No message provided."}), 400
|
247 |
+
|
248 |
+
print(f"Processing /chat_llm. Received message: {user_message}")
|
249 |
+
|
250 |
+
general_chat_prompt = f"Respond to the following message concisely: '{user_message}'"
|
251 |
+
chat_response_obj = gemini_model.generate_content(
|
252 |
+
general_chat_prompt,
|
253 |
+
generation_config=GenerationConfig(max_output_tokens=150, temperature=0.7)
|
254 |
+
)
|
255 |
+
chat_response = chat_response_obj.text.strip()
|
256 |
+
print(f"Gemini Raw Chat Response: {chat_response}")
|
257 |
+
|
258 |
+
json_prompt = (
|
259 |
+
f"Analyze the following message: '{user_message}'. "
|
260 |
+
f"Provide a JSON object with 'summary', 'sentiment' (positive/neutral/negative), "
|
261 |
+
f"and 'keywords' (array of strings). Do not include any other text outside the JSON block."
|
262 |
+
)
|
263 |
+
json_response_obj = gemini_model.generate_content(
|
264 |
+
[json_prompt],
|
265 |
+
generation_config=GenerationConfig(
|
266 |
+
response_mime_type="application/json",
|
267 |
+
max_output_tokens=200,
|
268 |
+
temperature=0.1
|
269 |
+
)
|
270 |
+
)
|
271 |
+
json_response = json_response_obj.text.strip()
|
272 |
+
print(f"Gemini Raw JSON Prompt Response: {json_response}")
|
273 |
+
|
274 |
+
parsed_json_output = None
|
275 |
+
try:
|
276 |
+
parsed_json_output = json.loads(json_response)
|
277 |
+
print(f"Parsed JSON from Gemini chat: {parsed_json_output}")
|
278 |
+
|
279 |
+
except json.JSONDecodeError as e:
|
280 |
+
print(f"ERROR: JSON parsing error for chat_llm (Gemini): {e}. Raw string: {json_response}")
|
281 |
+
except Exception as e:
|
282 |
+
print(f"ERROR: General error during JSON parsing attempt for chat_llm (Gemini): {e}. Raw string: {json_response}")
|
283 |
+
|
284 |
+
return jsonify({
|
285 |
+
"user_message": user_message,
|
286 |
+
"raw_chat_response": chat_response,
|
287 |
+
"raw_json_prompt_response": json_response,
|
288 |
+
"parsed_json_metrics": parsed_json_output,
|
289 |
+
"status": "success"
|
290 |
+
}), 200
|
291 |
+
|
292 |
+
except Exception as e:
|
293 |
+
print(f"ERROR: Error during LLM chat: {e}")
|
294 |
+
import traceback
|
295 |
+
traceback.print_exc()
|
296 |
+
return jsonify({"error": f"An error occurred during LLM chat: {str(e)}"}), 500
|
297 |
+
|
298 |
+
# Health check endpoint for Hugging Face Spaces (optional, but good practice)
|
299 |
+
@app.route('/health', methods=['GET'])
|
300 |
+
def health_check():
|
301 |
+
status = {
|
302 |
+
"status": "up",
|
303 |
+
"deepmost_model_initialized": sales_agent is not None,
|
304 |
+
"gemini_llm_initialized": gemini_model is not None,
|
305 |
+
"gemini_api_key_status": gemini_api_key_status,
|
306 |
+
"message": "Application is running"
|
307 |
+
}
|
308 |
+
# Provide more detail if a component failed
|
309 |
+
if sales_agent is None:
|
310 |
+
status["message"] = "Application running, but DeepMost model failed to initialize."
|
311 |
+
status["status"] = "degraded"
|
312 |
+
if gemini_model is None and gemini_api_key_status != "Missing": # Only degraded if API key was provided but init failed
|
313 |
+
status["message"] = "Application running, but Gemini LLM failed to initialize."
|
314 |
+
status["status"] = "degraded"
|
315 |
+
elif gemini_model is None and gemini_api_key_status == "Missing":
|
316 |
+
status["message"] = "Application running. Gemini LLM disabled (no API key)."
|
317 |
+
|
318 |
+
|
319 |
+
print(f"Health check requested. Status: {status}")
|
320 |
+
return jsonify(status), 200
|
321 |
+
|
322 |
+
# --- Main Execution Block ---
|
323 |
+
if __name__ == '__main__':
|
324 |
+
try:
|
325 |
+
print("Attempting to start Flask app (this block is primarily for local execution).")
|
326 |
+
print("Application setup complete. Expecting Gunicorn to take over.")
|
327 |
+
|
328 |
+
except Exception as startup_exception:
|
329 |
+
print(f"CRITICAL: An unhandled exception occurred during Flask app setup: {startup_exception}")
|
330 |
+
import traceback
|
331 |
+
traceback.print_exc()
|
332 |
+
sys.exit(1) # Exit with error code if startup fails
|
config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"python_version": "3.11"
|
3 |
+
}
|
gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
Flask-Cors
|
3 |
+
numpy
|
4 |
+
python-dotenv
|
5 |
+
google-generativeai
|
6 |
+
deepmost
|
7 |
+
gunicorn # Add this line!
|
8 |
+
|