File size: 11,000 Bytes
bb34f12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import argparse
import json
import os
from pathlib import Path
import random
import re
import time
from typing import Any, Dict, List, Optional, Tuple
import num2words
import ray
from tqdm import tqdm
from llmperf import common_metrics
from llmperf.common import SUPPORTED_APIS, construct_clients
from llmperf.models import RequestConfig
from llmperf.requests_launcher import RequestsLauncher
from llmperf.utils import (
LLMPerfResults,
)
MAX_RANDOM_NUMBER = 10000
def llm_correctness(
model: str,
additional_sampling_params: Optional[Dict[str, Any]] = None,
num_concurrent_requests: int = 1,
max_num_completed_requests: int = 500,
test_timeout_s=90,
llm_api="chat",
) -> Tuple[Dict[str, Any], List[Dict[str, Any]]]:
"""Get the token throughput and latencies for the given model.
Args:
model: The name of the model to query.
additional_sampling_params: Additional sampling parameters to send with the request.
For more information see the LLM APIs documentation for the completions
num_concurrent_requests: The number of concurrent requests to make. Increase
this to increase the amount of load and vice versa.
test_timeout_s: The amount of time to run the test for before reporting results.
llm_api: The type of request to make. Either "chat" or "litellm".
Returns:
A tuple containing summary metrics and raw results from the test.
"""
if not additional_sampling_params:
additional_sampling_params = {}
clients = construct_clients(llm_api=llm_api, num_clients=num_concurrent_requests)
req_launcher = RequestsLauncher(clients)
start_time = time.monotonic()
num_errored_requests = 0
num_mismatched_requests = 0
num_completed_requests = 0
sampling_params = {"temperature": 0.0}
sampling_params.update(additional_sampling_params)
completed_requests = []
iter = 0
pbar = tqdm(total=max_num_completed_requests)
while (
time.monotonic() - start_time < test_timeout_s
and num_completed_requests < max_num_completed_requests
):
iter += 1
rnd_number = random.randint(0, MAX_RANDOM_NUMBER)
rnd_num_words = num2words.num2words(rnd_number)
prompt = f"Convert the following sequence of words into a number: {rnd_num_words}.\nPrint the number first."
request_config = RequestConfig(
model=model,
prompt=(prompt, 0),
sampling_params=sampling_params,
metadata={"rnd_number": rnd_number},
llm_api=llm_api,
)
req_launcher.launch_requests(request_config)
if not (iter % num_concurrent_requests):
completed_requests.extend(req_launcher.get_next_ready())
pbar.update(len(completed_requests) - num_completed_requests)
num_completed_requests = len(completed_requests)
pbar.close()
end_time = time.monotonic()
if end_time - start_time >= test_timeout_s:
print("Test timed out before all requests could be completed.")
raw_results = []
print("Mismatched and errored requests.")
for out in completed_requests:
metrics, generated_text, completed_request_config = out
raw_results.append(
{
"metrics": metrics,
"generated_text": generated_text,
"request_config": dict(completed_request_config),
}
)
# if there were no errors when making request.
if not metrics[common_metrics.ERROR_CODE]:
try:
commas_between_numbers_re = r"(\d+),(?=\d)"
gen_text_commas_removed = re.sub(
commas_between_numbers_re, r"\1", generated_text
)
nums = re.findall(r"\d+", gen_text_commas_removed)
generated_text = gen_text_commas_removed.replace("\n", " ")
assert str(completed_request_config.metadata["rnd_number"]) in nums
except:
num_mismatched_requests += 1
print(
f" mismatched request: {generated_text}, expected: {completed_request_config.metadata['rnd_number']}"
)
else:
num_errored_requests += 1
print(
f" The request errored: {metrics[common_metrics.ERROR_CODE]}, "
f"{metrics[common_metrics.ERROR_MSG]} "
)
print()
error_rate = num_errored_requests / num_completed_requests
mismatch_rate = num_mismatched_requests / num_completed_requests
num_non_errored_requests = num_completed_requests - num_errored_requests
summary_metrics = {}
summary_metrics[common_metrics.NUM_ERRORS] = num_errored_requests
summary_metrics["num_mismatched_requests"] = num_mismatched_requests
summary_metrics["error_rate"] = error_rate
summary_metrics["mismatch_rate"] = mismatch_rate
summary_metrics[common_metrics.NUM_COMPLETED_REQUESTS] = num_completed_requests
summary_metrics["num_non_errored_requests"] = num_non_errored_requests
# Metadata
summary_metrics["model"] = model
summary_metrics["num_concurrent_requests"] = num_concurrent_requests
summary_metrics["additional_sampling_params"] = additional_sampling_params
summary_metrics["llm_api"] = llm_api
return summary_metrics, raw_results
def run(
llm_api: str,
model: str,
test_timeout_s: int,
max_num_completed_requests: int,
num_concurrent_requests: int,
additional_sampling_params: str,
results_dir: str,
user_metadata: Dict[str, str],
):
"""
Args:
llm_api: The type of request to make. Either "chat" or "litellm".
model: The name of the model to query.
max_num_completed_requests: The number of requests to complete before finishing the test.
test_timeout_s: The amount of time to run the test for before reporting results.
num_concurrent_requests: The number of concurrent requests to make. Increase
this to increase the amount of load and vice versa.
mean_input_tokens: The mean number of tokens to send in the prompt for the request.
stddev_input_tokens: The standard deviation of the number of tokens to send in the prompt for the request.
mean_output_tokens: The mean number of tokens to generate per request.
stddev_output_tokens: The standard deviation of the number of tokens to generate per request.
additional_sampling_params: Additional sampling parameters to send with the request.
For more information see the LLM APIs documentation for the completions.
results_dir: The directory to save the results to.
"""
summary_metrics, raw_results = llm_correctness(
model=model,
llm_api=llm_api,
test_timeout_s=test_timeout_s,
max_num_completed_requests=max_num_completed_requests,
num_concurrent_requests=num_concurrent_requests,
additional_sampling_params=json.loads(additional_sampling_params),
)
time.sleep(2)
print(
f"Results for llm correctness test for {model} queried with the {llm_api} api."
)
print(
f"Errors: {summary_metrics[common_metrics.NUM_ERRORS]}, "
f"Error rate: {summary_metrics['error_rate']}"
)
print(
f"Mismatched: {summary_metrics['num_mismatched_requests']}, "
f"Mismatch rate: {summary_metrics['mismatch_rate']}"
)
print(f"Completed: {summary_metrics[common_metrics.NUM_COMPLETED_REQUESTS]}")
print(f"Completed without errors: {summary_metrics['num_non_errored_requests']}")
if results_dir:
file_name = f"{model}_correctness"
file_name = re.sub(r"[^\w\d-]+", "-", file_name)
file_name = re.sub(r"-{2,}", "-", file_name)
summary_file_name = f"{file_name}_summary"
individual_responses_filename = f"{file_name}_individual_responses"
summary_metrics.update(user_metadata)
results = LLMPerfResults(name=summary_file_name, metadata=summary_metrics)
results_dir = Path(results_dir)
if not results_dir.exists():
results_dir.mkdir(parents=True)
elif not results_dir.is_dir():
raise ValueError(f"{results_dir} is not a directory")
with open(results_dir / f"{summary_file_name}.json", "w") as f:
json.dump(results.to_dict(), f, indent=4)
with open(results_dir / f"{individual_responses_filename}.json", "w") as f:
json.dump(raw_results, f, indent=4)
args = argparse.ArgumentParser(description="Run a correctness test for a given model.")
args.add_argument(
"--model", type=str, required=True, help="The model to use for this load test."
)
args.add_argument(
"--num-concurrent-requests",
type=int,
default=10,
help=("The number of concurrent requests to send. (default: %(default)s)"),
)
args.add_argument(
"--timeout",
type=int,
default=90,
help="The amount of time to run the load test for. (default: %(default)s)",
)
args.add_argument(
"--max-num-completed-requests",
type=int,
default=50,
help=(
"The number of requests to complete before finishing the test. Note "
"that its possible for the test to timeout first. (default: %(default)s)"
),
)
args.add_argument(
"--additional-sampling-params",
type=str,
default="{}",
help=(
"Additional sampling params to send with the each request to the LLM API. "
"(default: %(default)s) No additional sampling params are sent."
),
)
args.add_argument(
"--results-dir",
type=str,
default="",
help=(
"The directory to save the results to. "
"(`default: %(default)s`) No results are saved)"
),
)
args.add_argument(
"--llm-api",
type=str,
default="openai",
help=(
f"The type of request to make. The supported llm apis are {SUPPORTED_APIS} "
" (`default: %(default)s`)"
),
)
args.add_argument(
"--metadata",
type=str,
default="",
help=(
"A comma separated list of metadata to include in the results, e.g. "
"name=foo,bar=1. These will be added to the metadata field of the results. "
),
)
if __name__ == "__main__":
args = args.parse_args()
env_vars = dict(os.environ)
ray.init(runtime_env={"env_vars": env_vars})
# Parse user metadata.
user_metadata = {}
if args.metadata:
for item in args.metadata.split(","):
key, value = item.split("=")
user_metadata[key] = value
run(
llm_api=args.llm_api,
model=args.model,
test_timeout_s=args.timeout,
max_num_completed_requests=args.max_num_completed_requests,
num_concurrent_requests=args.num_concurrent_requests,
additional_sampling_params=args.additional_sampling_params,
results_dir=args.results_dir,
user_metadata=user_metadata,
)
|