Spaces:
Sleeping
Sleeping
File size: 6,559 Bytes
293ab16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import base64
import uuid
from io import BytesIO
from pathlib import Path
from typing import Optional, Tuple, Union
from PIL import Image, ImageDraw, ImageFont, ImageEnhance
import pytesseract
import torch
from transformers import BlipProcessor, BlipForConditionalGeneration
from diffusers import StableDiffusionPipeline
# Device config - prefer GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize BLIP captioning model and processor once
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base"
).to(device)
# Initialize Stable Diffusion pipeline once
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16" if device == "cuda" else None,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
)
pipe.to(device)
def extract_text_from_image(path: Union[str, Path]) -> str:
"""Extract text from image file at `path` using OCR (Tesseract)."""
try:
img = Image.open(path)
text = pytesseract.image_to_string(img)
return text.strip()
except Exception as e:
return f"[Error extracting text: {e}]"
def caption_image(path: Union[str, Path]) -> str:
"""Generate a descriptive caption for image at `path` using BLIP."""
try:
img = Image.open(path).convert("RGB")
inputs = processor(img, return_tensors="pt").to(device)
outputs = model.generate(**inputs)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"[Error generating caption: {e}]"
def generate_image(prompt: str, save_path: Optional[Union[str, Path]] = None) -> Path:
"""
Generate an image from text prompt using Stable Diffusion.
Saves image to `save_path` or temporary file if None.
Returns path to saved image.
"""
if not prompt.strip():
raise ValueError("Prompt must not be empty")
result = pipe(prompt)
image = result.images[0]
if save_path is None:
save_path = Path("/tmp") / f"image_{uuid.uuid4()}.png"
else:
save_path = Path(save_path)
image.save(save_path)
return save_path
def generate_placeholder_image(
prompt: str,
size: Tuple[int, int] = (512, 512),
bg_color: Tuple[int, int, int] = (173, 216, 230),
font_path: Optional[Union[str, Path]] = None,
font_size: int = 18,
) -> str:
"""
Create a placeholder image with the prompt text overlayed.
Returns base64-encoded PNG image string.
"""
img = Image.new("RGB", size, color=bg_color)
draw = ImageDraw.Draw(img)
try:
if font_path:
font = ImageFont.truetype(str(font_path), font_size)
else:
font = ImageFont.load_default()
except Exception:
font = ImageFont.load_default()
margin = 10
max_width = size[0] - 2 * margin
y_text = margin
lines = []
# Word-wrap text to fit width
words = prompt.split()
line = ""
for word in words:
test_line = f"{line} {word}".strip()
width, _ = draw.textsize(test_line, font=font)
if width <= max_width:
line = test_line
else:
lines.append(line)
line = word
lines.append(line)
for line in lines:
draw.text((margin, y_text), line, fill="black", font=font)
y_text += font.getsize(line)[1] + 4
buffer = BytesIO()
img.save(buffer, format="PNG")
encoded = base64.b64encode(buffer.getvalue()).decode("utf-8")
return encoded
def generate_image_base64(prompt: str) -> str:
"""
Generate image for prompt and return base64 PNG string.
"""
image_path = generate_image(prompt)
with open(image_path, "rb") as f:
encoded = base64.b64encode(f.read()).decode("utf-8")
return encoded
def overlay_text_on_image(
image_path: Union[str, Path],
text: str,
position: Tuple[int, int] = (10, 10),
font_path: Optional[Union[str, Path]] = None,
font_size: int = 20,
color: Tuple[int, int, int] = (255, 255, 255),
outline_color: Tuple[int, int, int] = (0, 0, 0),
outline_width: int = 2,
) -> Image.Image:
"""
Overlay given text on image at `image_path`.
Supports optional font and outline.
Returns PIL Image object.
"""
img = Image.open(image_path).convert("RGBA")
txt_layer = Image.new("RGBA", img.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt_layer)
try:
if font_path:
font = ImageFont.truetype(str(font_path), font_size)
else:
font = ImageFont.load_default()
except Exception:
font = ImageFont.load_default()
x, y = position
# Draw outline for better visibility
if outline_width > 0:
for offset in range(-outline_width, outline_width + 1):
if offset == 0:
continue
draw.text((x + offset, y), text, font=font, fill=outline_color + (255,))
draw.text((x, y + offset), text, font=font, fill=outline_color + (255,))
draw.text((x + offset, y + offset), text, font=font, fill=outline_color + (255,))
draw.text(position, text, font=font, fill=color + (255,))
combined = Image.alpha_composite(img, txt_layer)
return combined.convert("RGB")
def save_overlayed_image(
image_path: Union[str, Path],
text: str,
output_path: Union[str, Path],
**overlay_kwargs
) -> Path:
"""
Overlay text on image at `image_path` and save to `output_path`.
Extra keyword args passed to overlay_text_on_image().
"""
img = overlay_text_on_image(image_path, text, **overlay_kwargs)
output_path = Path(output_path)
img.save(output_path)
return output_path
def enhance_image_contrast(image_path: Union[str, Path], factor: float = 1.5) -> Image.Image:
"""
Enhance contrast of the image by the given factor.
Returns a PIL Image object.
"""
img = Image.open(image_path)
enhancer = ImageEnhance.Contrast(img)
enhanced_img = enhancer.enhance(factor)
return enhanced_img
def save_enhanced_image(image_path: Union[str, Path], output_path: Union[str, Path], factor: float = 1.5) -> Path:
"""
Enhance contrast of an image and save to output_path.
"""
enhanced_img = enhance_image_contrast(image_path, factor)
output_path = Path(output_path)
enhanced_img.save(output_path)
return output_path
|