File size: 5,809 Bytes
293ab16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import json
import os
import uuid
from datetime import datetime
from typing import List, Dict, Optional
from tinydb import TinyDB, Query
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from threading import Lock

# === Constants ===
HISTORY_FILE = "history_backup.json"
MEMORY_DB_PATH = "memory.json"

# === Persistent Memory with Session Tokens ===
class PersistentMemory:
    def __init__(self, path: str = MEMORY_DB_PATH):
        self.db = TinyDB(path)
        self.lock = Lock()

    def add(self, session_id: str, user_msg: str, bot_msg: str) -> None:
        with self.lock:
            self.db.insert({
                "session_id": session_id,
                "user": user_msg,
                "bot": bot_msg,
                "timestamp": datetime.utcnow().isoformat()
            })

    def get_last(self, session_id: str, n: int = 5) -> str:
        with self.lock:
            items = self.db.search(Query().session_id == session_id)[-n:]
        return "\n".join(f"User: {x['user']}\nAI: {x['bot']}" for x in items)

    def clear(self, session_id: Optional[str] = None) -> None:
        with self.lock:
            if session_id:
                self.db.remove(Query().session_id == session_id)
            else:
                self.db.truncate()

    def all(self, session_id: Optional[str] = None) -> List[Dict]:
        with self.lock:
            return self.db.search(Query().session_id == session_id) if session_id else self.db.all()

# === JSON-Backed In-Memory Chat History with Sessions ===
class ChatHistory:
    def __init__(self, backup_path: str = HISTORY_FILE):
        self.histories: Dict[str, List[Dict[str, str]]] = {}
        self.backup_path = backup_path
        self.lock = Lock()
        self.load()

    def add(self, session_id: str, role: str, message: str) -> None:
        with self.lock:
            self.histories.setdefault(session_id, []).append({
                "role": role,
                "message": message,
                "timestamp": datetime.utcnow().isoformat()
            })
            self.save()

    def get_all(self, session_id: str) -> List[Dict[str, str]]:
        return self.histories.get(session_id, [])

    def save(self) -> None:
        with self.lock:
            with open(self.backup_path, "w", encoding="utf-8") as f:
                json.dump(self.histories, f, indent=2)

    def load(self) -> None:
        if os.path.exists(self.backup_path):
            with open(self.backup_path, "r", encoding="utf-8") as f:
                self.histories = json.load(f)

    def export_text(self, session_id: str) -> str:
        history = self.histories.get(session_id, [])
        return "\n".join(f"{entry['role']} ({entry['timestamp']}): {entry['message']}" for entry in history)

    def search(self, session_id: str, query: str) -> List[Dict[str, str]]:
        return [
            entry for entry in self.histories.get(session_id, [])
            if query.lower() in entry["message"].lower()
        ]

# === Semantic Search with Session Context ===
class SemanticSearch:
    def __init__(self, model_name: str = "all-MiniLM-L6-v2"):
        self.model = SentenceTransformer(model_name)
        self.session_histories: Dict[str, List[Dict[str, str]]] = {}

    def add_to_history(self, session_id: str, role: str, message: str) -> None:
        self.session_histories.setdefault(session_id, []).append({
            "role": role,
            "message": message
        })

    def semantic_search(self, session_id: str, query: str, top_k: int = 3) -> List[Dict[str, str]]:
        history = self.session_histories.get(session_id, [])
        if not history:
            return []

        docs = [entry["message"] for entry in history]
        embeddings = self.model.encode(docs + [query], convert_to_tensor=True)
        query_vec = embeddings[-1].unsqueeze(0)
        doc_vecs = embeddings[:-1]

        sims = cosine_similarity(query_vec, doc_vecs)[0]
        top_indices = sims.argsort()[-top_k:][::-1]
        return [history[i] for i in top_indices]

    def export_history(self, session_id: str) -> str:
        return "\n".join(
            f"{m['role']}: {m['message']}" for m in self.session_histories.get(session_id, [])
        )

# === Singleton Instances ===
persistent_memory = PersistentMemory()
chat_history = ChatHistory()
semantic_search = SemanticSearch()

# === Unified Session Chat API ===

def create_session_id() -> str:
    return str(uuid.uuid4())

def add_chat_message(session_id: str, user_msg: str, bot_msg: str) -> None:
    persistent_memory.add(session_id, user_msg, bot_msg)
    chat_history.add(session_id, "User", user_msg)
    chat_history.add(session_id, "AI", bot_msg)
    semantic_search.add_to_history(session_id, "User", user_msg)
    semantic_search.add_to_history(session_id, "AI", bot_msg)

def get_recent_conversation(session_id: str, n: int = 5) -> str:
    return persistent_memory.get_last(session_id, n)

def export_full_history_text(session_id: str) -> str:
    return chat_history.export_text(session_id)

def search_chat_history_simple(session_id: str, query: str) -> List[Dict[str, str]]:
    return chat_history.search(session_id, query)

def search_chat_history_semantic(session_id: str, query: str, top_k: int = 3) -> List[Dict[str, str]]:
    return semantic_search.semantic_search(session_id, query, top_k)
session = create_session_id()
add_chat_message(session, "What is LangChain?", "LangChain is a framework for developing applications powered by LLMs.")
add_chat_message(session, "What is OpenAI?", "OpenAI is an AI research lab behind ChatGPT.")

print(get_recent_conversation(session))
print(search_chat_history_simple(session, "LangChain"))
print(search_chat_history_semantic(session, "framework"))