Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ import pandas as pd
|
|
5 |
import numpy as np
|
6 |
from datetime import datetime, timedelta
|
7 |
from typing import Dict, List, Any
|
|
|
|
|
|
|
8 |
|
9 |
# --- Data Processing Class ---
|
10 |
class DataProcessor:
|
@@ -356,27 +359,95 @@ def render_brainstorm_page():
|
|
356 |
else:
|
357 |
st.info("No products yet. Create one to get started!")
|
358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
def render_chat():
|
360 |
-
st.header("💬 Business Assistant")
|
361 |
|
|
|
|
|
|
|
|
|
|
|
362 |
if "messages" not in st.session_state:
|
363 |
st.session_state.messages = []
|
364 |
|
|
|
365 |
for message in st.session_state.messages:
|
366 |
with st.chat_message(message["role"]):
|
367 |
st.markdown(message["content"])
|
368 |
|
|
|
369 |
if prompt := st.chat_input("Ask about your business..."):
|
|
|
370 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
|
|
371 |
with st.chat_message("user"):
|
372 |
st.markdown(prompt)
|
373 |
|
374 |
-
|
375 |
-
|
376 |
with st.chat_message("assistant"):
|
377 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
379 |
|
|
|
380 |
def main():
|
381 |
st.set_page_config(
|
382 |
page_title="Prospira",
|
|
|
5 |
import numpy as np
|
6 |
from datetime import datetime, timedelta
|
7 |
from typing import Dict, List, Any
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
import torch
|
10 |
+
import streamlit as st
|
11 |
|
12 |
# --- Data Processing Class ---
|
13 |
class DataProcessor:
|
|
|
359 |
else:
|
360 |
st.info("No products yet. Create one to get started!")
|
361 |
|
362 |
+
|
363 |
+
class LLaMAAssistant:
|
364 |
+
def __init__(self, model_name="meta-llama/Llama-2-7b-chat-hf"):
|
365 |
+
try:
|
366 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
367 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
368 |
+
model_name,
|
369 |
+
torch_dtype=torch.float16,
|
370 |
+
device_map="auto"
|
371 |
+
)
|
372 |
+
except Exception as e:
|
373 |
+
st.error(f"Model loading error: {e}")
|
374 |
+
self.model = None
|
375 |
+
self.tokenizer = None
|
376 |
+
|
377 |
+
def generate_response(self, prompt: str, context: list = None) -> str:
|
378 |
+
if not self.model or not self.tokenizer:
|
379 |
+
return "LLM not initialized. Please check model configuration."
|
380 |
+
|
381 |
+
# Prepare conversation context
|
382 |
+
if context is None:
|
383 |
+
context = []
|
384 |
+
|
385 |
+
# Create full prompt with conversation history
|
386 |
+
full_prompt = "".join([f"{msg['role']}: {msg['content']}\n" for msg in context])
|
387 |
+
full_prompt += f"user: {prompt}\nassistant: "
|
388 |
+
|
389 |
+
# Tokenize input
|
390 |
+
input_ids = self.tokenizer(full_prompt, return_tensors="pt").input_ids.to(self.model.device)
|
391 |
+
|
392 |
+
# Generate response
|
393 |
+
try:
|
394 |
+
output = self.model.generate(
|
395 |
+
input_ids,
|
396 |
+
max_length=500,
|
397 |
+
num_return_sequences=1,
|
398 |
+
no_repeat_ngram_size=2,
|
399 |
+
temperature=0.7,
|
400 |
+
top_p=0.9
|
401 |
+
)
|
402 |
+
|
403 |
+
# Decode response
|
404 |
+
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
405 |
+
|
406 |
+
# Extract only the new part of the response
|
407 |
+
response = response[len(full_prompt):].strip()
|
408 |
+
|
409 |
+
return response
|
410 |
+
except Exception as e:
|
411 |
+
return f"Response generation error: {e}"
|
412 |
+
|
413 |
def render_chat():
|
414 |
+
st.header("💬 Business AI Assistant")
|
415 |
|
416 |
+
# Initialize LLaMA model (only once)
|
417 |
+
if 'llama_assistant' not in st.session_state:
|
418 |
+
st.session_state.llama_assistant = LLaMAAssistant()
|
419 |
+
|
420 |
+
# Initialize message history
|
421 |
if "messages" not in st.session_state:
|
422 |
st.session_state.messages = []
|
423 |
|
424 |
+
# Display chat history
|
425 |
for message in st.session_state.messages:
|
426 |
with st.chat_message(message["role"]):
|
427 |
st.markdown(message["content"])
|
428 |
|
429 |
+
# User input
|
430 |
if prompt := st.chat_input("Ask about your business..."):
|
431 |
+
# Add user message to chat history
|
432 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
433 |
+
|
434 |
+
# Display user message
|
435 |
with st.chat_message("user"):
|
436 |
st.markdown(prompt)
|
437 |
|
438 |
+
# Generate AI response
|
|
|
439 |
with st.chat_message("assistant"):
|
440 |
+
with st.spinner("Generating response..."):
|
441 |
+
response = st.session_state.llama_assistant.generate_response(
|
442 |
+
prompt,
|
443 |
+
st.session_state.messages[:-1] # Exclude current message
|
444 |
+
)
|
445 |
+
st.markdown(response)
|
446 |
+
|
447 |
+
# Add assistant response to history
|
448 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
449 |
|
450 |
+
# Replace the existing render_chat() function in your main.py with this implementation
|
451 |
def main():
|
452 |
st.set_page_config(
|
453 |
page_title="Prospira",
|