Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -147,96 +147,118 @@ def generate_sample_data():
|
|
147 |
|
148 |
# --- Page Rendering Functions ---
|
149 |
def render_dashboard():
|
150 |
-
st.header("π
|
151 |
|
152 |
-
#
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
#
|
157 |
col1, col2, col3, col4 = st.columns(4)
|
158 |
with col1:
|
159 |
st.metric("Total Revenue",
|
160 |
-
f"${
|
161 |
-
delta=f"{
|
162 |
with col2:
|
163 |
st.metric("Total Users",
|
164 |
-
f"{
|
165 |
-
delta=f"{
|
166 |
with col3:
|
167 |
st.metric("Avg Engagement",
|
168 |
-
f"{
|
169 |
-
delta=f"{data['Engagement'].pct_change().mean()*100:.2f}%")
|
170 |
with col4:
|
171 |
-
st.metric("
|
172 |
-
|
173 |
-
delta=f"{data['Profit_Margin'].pct_change().mean()*100:.2f}%")
|
174 |
|
175 |
-
#
|
176 |
col1, col2 = st.columns(2)
|
177 |
|
178 |
with col1:
|
179 |
-
st.subheader("Revenue
|
180 |
-
|
181 |
-
|
182 |
-
x=
|
183 |
-
y=
|
184 |
mode='lines',
|
185 |
-
name='Revenue',
|
186 |
line=dict(color='blue')
|
187 |
))
|
188 |
-
|
189 |
-
x=
|
190 |
-
y=
|
191 |
mode='lines',
|
192 |
-
name='
|
193 |
-
line=dict(color='
|
194 |
))
|
195 |
-
|
196 |
-
st.plotly_chart(fig_revenue, use_container_width=True)
|
197 |
|
198 |
with col2:
|
199 |
-
st.subheader("
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
208 |
)
|
209 |
-
|
210 |
-
st.plotly_chart(fig_engagement, use_container_width=True)
|
211 |
-
|
212 |
-
# Category Performance
|
213 |
-
st.subheader("Category Performance Breakdown")
|
214 |
-
category_performance = data.groupby('Category').agg({
|
215 |
-
'Revenue': 'sum',
|
216 |
-
'Users': 'sum',
|
217 |
-
'Engagement': 'mean'
|
218 |
-
}).reset_index()
|
219 |
-
|
220 |
-
fig_category = px.bar(
|
221 |
-
category_performance,
|
222 |
-
x='Category',
|
223 |
-
y='Revenue',
|
224 |
-
color='Engagement',
|
225 |
-
title='Revenue by Category with Engagement Overlay'
|
226 |
-
)
|
227 |
-
st.plotly_chart(fig_category, use_container_width=True)
|
228 |
|
229 |
-
#
|
230 |
-
st.subheader("
|
231 |
-
|
232 |
|
233 |
-
with
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
|
237 |
-
with
|
238 |
-
|
239 |
-
|
|
|
240 |
|
241 |
def render_analytics():
|
242 |
st.header("π Data Analytics")
|
|
|
147 |
|
148 |
# --- Page Rendering Functions ---
|
149 |
def render_dashboard():
|
150 |
+
st.header("π Advanced Business Intelligence Dashboard")
|
151 |
|
152 |
+
# Enhanced Data Generation with Predictive Elements
|
153 |
+
def generate_predictive_data():
|
154 |
+
dates = pd.date_range(start='2024-01-01', end='2024-02-15', freq='D')
|
155 |
+
base_data = pd.DataFrame({
|
156 |
+
'Date': dates,
|
157 |
+
'Revenue': np.random.normal(1000, 100, len(dates)),
|
158 |
+
'Users': np.random.randint(100, 200, len(dates)),
|
159 |
+
'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
|
160 |
+
'Category': np.random.choice(['Digital', 'Physical', 'Service'], len(dates))
|
161 |
+
})
|
162 |
+
|
163 |
+
# Simple predictive modeling
|
164 |
+
base_data['Predicted_Revenue'] = base_data['Revenue'] * np.linspace(1, 1.2, len(dates))
|
165 |
+
base_data['Revenue_Trend'] = np.where(base_data['Predicted_Revenue'] > base_data['Revenue'], 'Positive', 'Negative')
|
166 |
+
|
167 |
+
return base_data
|
168 |
+
|
169 |
+
# Data Preparation
|
170 |
+
data = generate_predictive_data()
|
171 |
+
|
172 |
+
# Sidebar Filters
|
173 |
+
st.sidebar.header("Dashboard Filters")
|
174 |
+
selected_categories = st.sidebar.multiselect(
|
175 |
+
"Select Categories",
|
176 |
+
options=data['Category'].unique(),
|
177 |
+
default=data['Category'].unique()
|
178 |
+
)
|
179 |
+
|
180 |
+
date_range = st.sidebar.date_input(
|
181 |
+
"Select Date Range",
|
182 |
+
[data['Date'].min(), data['Date'].max()]
|
183 |
+
)
|
184 |
+
|
185 |
+
# Filter Data
|
186 |
+
filtered_data = data[
|
187 |
+
(data['Category'].isin(selected_categories)) &
|
188 |
+
(data['Date'].between(date_range[0], date_range[1]))
|
189 |
+
]
|
190 |
|
191 |
+
# KPI Metrics
|
192 |
col1, col2, col3, col4 = st.columns(4)
|
193 |
with col1:
|
194 |
st.metric("Total Revenue",
|
195 |
+
f"${filtered_data['Revenue'].sum():,.2f}",
|
196 |
+
delta=f"{filtered_data['Revenue'].pct_change().mean()*100:.2f}%")
|
197 |
with col2:
|
198 |
st.metric("Total Users",
|
199 |
+
f"{filtered_data['Users'].sum():,}",
|
200 |
+
delta=f"{filtered_data['Users'].pct_change().mean()*100:.2f}%")
|
201 |
with col3:
|
202 |
st.metric("Avg Engagement",
|
203 |
+
f"{filtered_data['Engagement'].mean():.2%}")
|
|
|
204 |
with col4:
|
205 |
+
st.metric("Predicted Trend",
|
206 |
+
filtered_data['Revenue_Trend'].mode()[0])
|
|
|
207 |
|
208 |
+
# Advanced Visualizations
|
209 |
col1, col2 = st.columns(2)
|
210 |
|
211 |
with col1:
|
212 |
+
st.subheader("Revenue Forecast")
|
213 |
+
forecast_fig = go.Figure()
|
214 |
+
forecast_fig.add_trace(go.Scatter(
|
215 |
+
x=filtered_data['Date'],
|
216 |
+
y=filtered_data['Revenue'],
|
217 |
mode='lines',
|
218 |
+
name='Actual Revenue',
|
219 |
line=dict(color='blue')
|
220 |
))
|
221 |
+
forecast_fig.add_trace(go.Scatter(
|
222 |
+
x=filtered_data['Date'],
|
223 |
+
y=filtered_data['Predicted_Revenue'],
|
224 |
mode='lines',
|
225 |
+
name='Predicted Revenue',
|
226 |
+
line=dict(color='red', dash='dot')
|
227 |
))
|
228 |
+
st.plotly_chart(forecast_fig, use_container_width=True)
|
|
|
229 |
|
230 |
with col2:
|
231 |
+
st.subheader("Category Performance")
|
232 |
+
category_performance = filtered_data.groupby('Category').agg({
|
233 |
+
'Revenue': ['sum', 'mean'],
|
234 |
+
'Users': 'sum',
|
235 |
+
'Engagement': 'mean'
|
236 |
+
}).reset_index()
|
237 |
+
category_performance.columns = ['Category', 'Total_Revenue', 'Avg_Revenue', 'Total_Users', 'Avg_Engagement']
|
238 |
+
|
239 |
+
perf_fig = px.bar(
|
240 |
+
category_performance,
|
241 |
+
x='Category',
|
242 |
+
y='Total_Revenue',
|
243 |
+
color='Avg_Engagement',
|
244 |
+
hover_data=['Total_Users', 'Avg_Revenue']
|
245 |
)
|
246 |
+
st.plotly_chart(perf_fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
# Predictive Insights
|
249 |
+
st.subheader("Predictive Insights")
|
250 |
+
col1, col2 = st.columns(2)
|
251 |
|
252 |
+
with col1:
|
253 |
+
top_category = category_performance.loc[category_performance['Total_Revenue'].idxmax()]
|
254 |
+
st.metric("Top Revenue Category",
|
255 |
+
top_category['Category'],
|
256 |
+
delta=f"${top_category['Total_Revenue']:,.2f}")
|
257 |
|
258 |
+
with col2:
|
259 |
+
growth_prediction = filtered_data['Predicted_Revenue'].mean() / filtered_data['Revenue'].mean() - 1
|
260 |
+
st.metric("Revenue Growth Prediction",
|
261 |
+
f"{growth_prediction:.2%}")
|
262 |
|
263 |
def render_analytics():
|
264 |
st.header("π Data Analytics")
|