Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import os | |
from datetime import datetime | |
try: | |
import google.generativeai as genai | |
GEMINI_AVAILABLE = True | |
except ImportError: | |
GEMINI_AVAILABLE = False | |
class ChatbotManager: | |
def __init__(self): | |
if GEMINI_AVAILABLE and 'GEMINI_API_KEY' in os.environ: | |
genai.configure(api_key=os.environ['GEMINI_API_KEY']) | |
self.model = genai.GenerativeModel('gemini-pro') | |
else: | |
self.model = None | |
if 'uploaded_df' not in st.session_state: | |
st.session_state.uploaded_df = None | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
def render_chat_interface(self): | |
"""Render the main chat interface""" | |
st.header("π Data Analysis Chatbot") | |
if not GEMINI_AVAILABLE: | |
st.warning("Gemini API not available - running in limited mode") | |
# File upload section | |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv") | |
if uploaded_file is not None: | |
self._process_uploaded_file(uploaded_file) | |
# Chat interface | |
if st.session_state.uploaded_df is not None: | |
self._render_chat_window() | |
def _process_uploaded_file(self, uploaded_file): | |
"""Process the uploaded CSV file""" | |
try: | |
df = pd.read_csv(uploaded_file) | |
st.session_state.uploaded_df = df | |
st.success("Data successfully loaded!") | |
with st.expander("View Data Preview"): | |
st.dataframe(df.head()) | |
# Initial analysis | |
if self.model: | |
initial_prompt = f"Briefly describe this dataset with {len(df)} rows and {len(df.columns)} columns." | |
response = self._generate_response(initial_prompt) | |
st.session_state.chat_history.append({ | |
"role": "assistant", | |
"content": response | |
}) | |
except Exception as e: | |
st.error(f"Error processing file: {str(e)}") | |
def _render_chat_window(self): | |
"""Render the chat conversation window""" | |
st.subheader("Chat About Your Data") | |
# Display chat history | |
for message in st.session_state.chat_history: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# User input | |
if prompt := st.chat_input("Ask about your data..."): | |
self._handle_user_input(prompt) | |
def _handle_user_input(self, prompt): | |
"""Handle user input and generate response""" | |
# Add user message to chat history | |
st.session_state.chat_history.append({"role": "user", "content": prompt}) | |
# Display user message | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Generate and display assistant response | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = self._generate_response(prompt) | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.chat_history.append({"role": "assistant", "content": response}) | |
def _generate_response(self, prompt: str) -> str: | |
"""Generate response using available backend""" | |
df = st.session_state.uploaded_df | |
if self.model: | |
# Use Gemini if available | |
try: | |
data_summary = f"Data: {len(df)} rows, columns: {', '.join(df.columns)}" | |
full_prompt = f"{data_summary}\n\nUser question: {prompt}" | |
response = self.model.generate_content(full_prompt) | |
return response.text | |
except Exception as e: | |
return f"Gemini error: {str(e)}" | |
else: | |
# Fallback basic analysis | |
if "summary" in prompt.lower(): | |
return f"Basic summary:\n{df.describe().to_markdown()}" | |
elif "columns" in prompt.lower(): | |
return f"Columns: {', '.join(df.columns)}" | |
else: | |
return "I can provide basic info about columns and summary statistics." |