Spaces:
Running
Running
File size: 9,454 Bytes
0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 5f6c869 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 0d7d0ea 899f7e3 5f6c869 899f7e3 5f6c869 899f7e3 5f6c869 899f7e3 0d7d0ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Any
# --- Data Processing Class ---
class DataProcessor:
def __init__(self):
self.data = None
self.numeric_columns = []
self.categorical_columns = []
self.date_columns = []
def load_data(self, file) -> bool:
try:
self.data = pd.read_csv(file)
self._classify_columns()
return True
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return False
def _classify_columns(self):
for col in self.data.columns:
if pd.api.types.is_numeric_dtype(self.data[col]):
self.numeric_columns.append(col)
elif pd.api.types.is_datetime64_any_dtype(self.data[col]):
self.date_columns.append(col)
else:
try:
pd.to_datetime(self.data[col])
self.date_columns.append(col)
except:
self.categorical_columns.append(col)
def get_basic_stats(self) -> Dict[str, Any]:
if self.data is None:
return {}
stats = {
'summary': self.data[self.numeric_columns].describe(),
'missing_values': self.data.isnull().sum(),
'row_count': len(self.data),
'column_count': len(self.data.columns)
}
return stats
def create_visualization(self, chart_type: str, x_col: str, y_col: str, color_col: str = None) -> go.Figure:
if chart_type == "Line Plot":
fig = px.line(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Bar Plot":
fig = px.bar(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Scatter Plot":
fig = px.scatter(self.data, x=x_col, y=y_col, color=color_col)
elif chart_type == "Box Plot":
fig = px.box(self.data, x=x_col, y=y_col, color=color_col)
else:
fig = px.histogram(self.data, x=x_col, color=color_col)
return fig
# --- Sample Data Generation ---
def generate_sample_data():
dates = pd.date_range(start='2024-01-01', end='2024-01-31', freq='D')
return pd.DataFrame({
'Date': dates,
'Revenue': np.random.normal(1000, 100, len(dates)),
'Users': np.random.randint(100, 200, len(dates)),
'Engagement': np.random.uniform(0.5, 0.9, len(dates)),
'Category': np.random.choice(['A', 'B', 'C'], len(dates))
})
# --- Page Rendering Functions ---
def render_dashboard():
st.header("π Performance Dashboard")
data = generate_sample_data()
# KPI Metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Revenue", f"${data['Revenue'].sum():,.2f}")
with col2:
st.metric("Total Users", f"{data['Users'].sum():,}")
with col3:
st.metric("Avg Engagement", f"{data['Engagement'].mean():.2%}")
with col4:
st.metric("Active Days", len(data))
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue Trend")
fig = px.line(data, x='Date', y='Revenue')
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("User Engagement by Category")
fig = px.scatter(data, x='Date', y='Engagement',
size='Users', color='Category')
st.plotly_chart(fig, use_container_width=True)
def render_analytics():
st.header("π Data Analytics")
processor = DataProcessor()
# File upload
uploaded_file = st.file_uploader("Upload your CSV data", type=['csv'])
if uploaded_file is not None:
if processor.load_data(uploaded_file):
st.success("Data loaded successfully!")
tabs = st.tabs(["Data Preview", "Statistics", "Visualization", "Metrics"])
# Data Preview Tab
with tabs[0]:
st.subheader("Data Preview")
st.dataframe(processor.data.head())
st.info(f"Total rows: {len(processor.data)}, Total columns: {len(processor.data.columns)}")
# Statistics Tab
with tabs[1]:
st.subheader("Basic Statistics")
stats = processor.get_basic_stats()
st.write(stats['summary'])
st.subheader("Missing Values")
st.write(stats['missing_values'])
# Visualization Tab
with tabs[2]:
st.subheader("Create Visualization")
col1, col2, col3 = st.columns(3)
with col1:
chart_type = st.selectbox(
"Select Chart Type",
["Line Plot", "Bar Plot", "Scatter Plot", "Box Plot", "Histogram"]
)
with col2:
x_col = st.selectbox("Select X-axis", processor.data.columns)
with col3:
y_col = st.selectbox("Select Y-axis", processor.numeric_columns) if chart_type != "Histogram" else None
color_col = st.selectbox("Select Color Variable (optional)",
['None'] + processor.categorical_columns)
color_col = None if color_col == 'None' else color_col
fig = processor.create_visualization(
chart_type,
x_col,
y_col if y_col else x_col,
color_col
)
st.plotly_chart(fig, use_container_width=True)
# Metrics Tab
with tabs[3]:
st.subheader("Column Metrics")
selected_col = st.selectbox("Select column", processor.numeric_columns)
metrics = {
'Mean': processor.data[selected_col].mean(),
'Median': processor.data[selected_col].median(),
'Std Dev': processor.data[selected_col].std(),
'Min': processor.data[selected_col].min(),
'Max': processor.data[selected_col].max()
}
cols = st.columns(len(metrics))
for col, (metric, value) in zip(cols, metrics.items()):
col.metric(metric, f"{value:.2f}")
def render_brainstorm():
st.header("π§ Product Brainstorm")
# Product selection
products = ["Product A", "Product B", "Product C", "Add New Product"]
selected_product = st.selectbox("Select Product", products)
if selected_product == "Add New Product":
with st.form("new_product"):
st.subheader("Add New Product")
product_name = st.text_input("Product Name")
product_desc = st.text_area("Product Description")
product_category = st.selectbox("Category", ["Category A", "Category B", "Category C"])
if st.form_submit_button("Add Product"):
st.success(f"Product '{product_name}' added successfully!")
else:
st.subheader(f"Analysis for {selected_product}")
# Sample metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Sales", "$12,345", "+10%")
with col2:
st.metric("Reviews", "4.5/5", "+0.2")
with col3:
st.metric("Engagement", "89%", "-2%")
def render_chat():
st.header("π¬ Business Assistant")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Ask about your business..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Simple response (placeholder for LLM integration)
response = f"Thank you for your question about '{prompt}'. The LLM integration will be implemented soon."
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# --- Main App ---
def main():
st.set_page_config(
page_title="Prospira",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar
with st.sidebar:
st.title("Prospira")
st.subheader("Data-Driven Solutions")
# Navigation
page = st.radio(
"Navigation",
["Dashboard", "Analytics", "Brainstorm", "Chat"]
)
# Page routing
if page == "Dashboard":
render_dashboard()
elif page == "Analytics":
render_analytics()
elif page == "Brainstorm":
render_brainstorm()
elif page == "Chat":
render_chat()
if __name__ == "__main__":
main() |