File size: 3,730 Bytes
48ec548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905fa2e
48ec548
 
 
970a17e
48ec548
 
 
 
b281668
48ec548
4df9332
 
 
481bf88
2903e9c
4df9332
 
 
 
 
 
 
 
 
48ec548
2903e9c
 
 
48ec548
4df9332
48ec548
 
 
 
 
 
 
 
 
905fa2e
48ec548
2903e9c
6fc8e08
48ec548
 
6fc8e08
48ec548
6fc8e08
 
 
 
 
 
 
 
 
48ec548
6fc8e08
 
 
 
 
 
48ec548
6fc8e08
 
 
 
 
 
 
 
48ec548
6fc8e08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import spaces
import gradio as gr
import json
import torch
import wavio
from tqdm import tqdm
from huggingface_hub import snapshot_download
from pydub import AudioSegment
from gradio import Markdown

import torch
from diffusers import DiffusionPipeline,AudioPipelineOutput
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
from typing import Union
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm
from TangoFlux import TangoFluxInference
import torchaudio



tangoflux = TangoFluxInference(name="declare-lab/TangoFlux")



@spaces.GPU(duration=15)
def gradio_generate(prompt, steps, guidance,duration=10):

    output = tangoflux.generate(prompt,steps=steps,guidance_scale=guidance,duration=duration)
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    
    
    #wavio.write(output_filename, output_wave, rate=44100, sampwidth=2)
    unique_filename = f"output_{uuid.uuid4().hex}.wav"
    print(f"Saving audio to file: {unique_filename}")

    # Save to file
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")

    # Return the path to the generated audio file
    return unique_filename

    #if (output_format == "mp3"):
     #   AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3")
      #  output_filename = "temp.mp3"

    #return output_filename

description_text = """
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
<p/>
"""
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
#output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices =  "wav"], value = "wav")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=10, maximum=100, value=25, step=5, label="Steps", interactive=True)
guidance_scale = gr.Slider(minimum=1, maximum=10, value=4.5, step=0.5, label="Guidance Scale", interactive=True)
duration_scale = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True)

interface = gr.Interface(
    fn=gradio_generate,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
        gr.Slider(0, 30, value=10, label="Duration in Seconds"),
        gr.Slider(10, 150, value=50, step=5, label="Number of Diffusion Steps"),
        gr.Slider(1, 10, value=4.5, step=0.5, label="CFG Scale")
    ],
    outputs=gr.Audio(type="filepath", label="Generated Audio"),
    title="TangoFlux Generator",
    description="Generate variable-length stereo audio at 44.1kHz from text prompts using TangoFlux.",
    examples=[
    [
        "Create a serene soundscape of a quiet beach at sunset.",  # Text prompt
 
        15,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        4.5,  # CFG Scale
    ],
    
    ["Rock beat played in a treated studio, session drumming on an acoustic kit.",
        30,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        7,  # CFG Scale
     
    ]
])

interface.launch()