Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,730 Bytes
48ec548 905fa2e 48ec548 970a17e 48ec548 b281668 48ec548 4df9332 481bf88 2903e9c 4df9332 48ec548 2903e9c 48ec548 4df9332 48ec548 905fa2e 48ec548 2903e9c 6fc8e08 48ec548 6fc8e08 48ec548 6fc8e08 48ec548 6fc8e08 48ec548 6fc8e08 48ec548 6fc8e08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import spaces
import gradio as gr
import json
import torch
import wavio
from tqdm import tqdm
from huggingface_hub import snapshot_download
from pydub import AudioSegment
from gradio import Markdown
import torch
from diffusers import DiffusionPipeline,AudioPipelineOutput
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
from typing import Union
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm
from TangoFlux import TangoFluxInference
import torchaudio
tangoflux = TangoFluxInference(name="declare-lab/TangoFlux")
@spaces.GPU(duration=15)
def gradio_generate(prompt, steps, guidance,duration=10):
output = tangoflux.generate(prompt,steps=steps,guidance_scale=guidance,duration=duration)
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
#wavio.write(output_filename, output_wave, rate=44100, sampwidth=2)
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
#if (output_format == "mp3"):
# AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3")
# output_filename = "temp.mp3"
#return output_filename
description_text = """
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
<p/>
"""
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
#output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = "wav"], value = "wav")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=10, maximum=100, value=25, step=5, label="Steps", interactive=True)
guidance_scale = gr.Slider(minimum=1, maximum=10, value=4.5, step=0.5, label="Guidance Scale", interactive=True)
duration_scale = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True)
interface = gr.Interface(
fn=gradio_generate,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Slider(0, 30, value=10, label="Duration in Seconds"),
gr.Slider(10, 150, value=50, step=5, label="Number of Diffusion Steps"),
gr.Slider(1, 10, value=4.5, step=0.5, label="CFG Scale")
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="TangoFlux Generator",
description="Generate variable-length stereo audio at 44.1kHz from text prompts using TangoFlux.",
examples=[
[
"Create a serene soundscape of a quiet beach at sunset.", # Text prompt
15, # Duration in Seconds
100, # Number of Diffusion Steps
4.5, # CFG Scale
],
["Rock beat played in a treated studio, session drumming on an acoustic kit.",
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
]
])
interface.launch() |