Spaces:
Sleeping
Sleeping
Merge branch 'main' of https://huggingface.co/spaces/de-Rodrigo/Embeddings
Browse files
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
from bokeh.plotting import figure
|
4 |
-
from bokeh.models import ColumnDataSource
|
5 |
-
from bokeh.
|
|
|
6 |
from sklearn.decomposition import PCA
|
7 |
from sklearn.manifold import TSNE
|
|
|
8 |
|
9 |
TOOLTIPS = """
|
10 |
<div>
|
@@ -17,149 +20,283 @@ TOOLTIPS = """
|
|
17 |
</div>
|
18 |
"""
|
19 |
|
20 |
-
def
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
palette = Category10[num_labels]
|
34 |
else:
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
source = ColumnDataSource(data=dict(
|
41 |
x=subset['x'],
|
42 |
y=subset['y'],
|
43 |
label=subset['label'],
|
44 |
img=subset['img']
|
45 |
))
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
p.legend.location = "top_right"
|
50 |
-
p.legend.click_policy = "hide"
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
def
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
.sub-title {
|
64 |
-
font-size: 30px;
|
65 |
-
color: #555;
|
66 |
-
}
|
67 |
-
.custom-text {
|
68 |
-
font-size: 18px;
|
69 |
-
line-height: 1.5;
|
70 |
-
}
|
71 |
-
</style>
|
72 |
-
""",
|
73 |
-
unsafe_allow_html=True
|
74 |
-
)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
""",
|
84 |
-
unsafe_allow_html=True
|
85 |
-
)
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
else:
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
# A帽adir las coordenadas resultantes al DataFrame
|
112 |
-
df_donut['x'] = reduced[:, 0]
|
113 |
-
df_donut['y'] = reduced[:, 1]
|
114 |
|
115 |
-
|
116 |
-
|
|
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
"Seleccione subsets para visualizar (Donut):",
|
124 |
-
options=unique_labels,
|
125 |
-
default=unique_labels
|
126 |
-
)
|
127 |
-
render_plot(selected_labels, df_donut, plot_placeholder)
|
128 |
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
reduced2 = tsne2.fit_transform(all_embeddings2)
|
150 |
-
|
151 |
-
df_idefics2['x'] = reduced2[:, 0]
|
152 |
-
df_idefics2['y'] = reduced2[:, 1]
|
153 |
-
|
154 |
-
unique_labels2 = df_idefics2['label'].unique().tolist()
|
155 |
-
plot_placeholder2 = st.empty()
|
156 |
|
157 |
-
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
"
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
)
|
165 |
-
render_plot(selected_labels2, df_idefics2, plot_placeholder2)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
from bokeh.plotting import figure
|
5 |
+
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
|
6 |
+
from bokeh.layouts import row, column
|
7 |
+
from bokeh.palettes import Reds9, Blues9
|
8 |
from sklearn.decomposition import PCA
|
9 |
from sklearn.manifold import TSNE
|
10 |
+
import io
|
11 |
|
12 |
TOOLTIPS = """
|
13 |
<div>
|
|
|
20 |
</div>
|
21 |
"""
|
22 |
|
23 |
+
def config_style():
|
24 |
+
st.markdown("""
|
25 |
+
<style>
|
26 |
+
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
|
27 |
+
.sub-title { font-size: 30px; color: #555; }
|
28 |
+
.custom-text { font-size: 18px; line-height: 1.5; }
|
29 |
+
</style>
|
30 |
+
""", unsafe_allow_html=True)
|
31 |
+
st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)
|
32 |
|
33 |
+
# Modificamos load_embeddings para aceptar el modelo a cargar
|
34 |
+
def load_embeddings(model):
|
35 |
+
if model == "Donut":
|
36 |
+
df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
|
37 |
+
df_es_digital_seq = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
|
38 |
+
elif model == "Idefics2":
|
39 |
+
df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
|
40 |
+
df_es_digital_seq = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
|
|
|
41 |
else:
|
42 |
+
st.error("Modelo no reconocido")
|
43 |
+
return None
|
44 |
+
return {"real": df_real, "es-digital-seq": df_es_digital_seq}
|
45 |
|
46 |
+
# Funciones auxiliares (id茅nticas a las de tu c贸digo)
|
47 |
+
def reducer_selector(df_combined, embedding_cols):
|
48 |
+
reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
|
49 |
+
all_embeddings = df_combined[embedding_cols].values
|
50 |
+
if reduction_method == "PCA":
|
51 |
+
reducer = PCA(n_components=2)
|
52 |
+
else:
|
53 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
54 |
+
return reducer.fit_transform(all_embeddings)
|
55 |
+
|
56 |
+
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping):
|
57 |
+
renderers = {}
|
58 |
+
for label in selected_labels:
|
59 |
+
subset = df[df['label'] == label]
|
60 |
+
if subset.empty:
|
61 |
+
continue
|
62 |
source = ColumnDataSource(data=dict(
|
63 |
x=subset['x'],
|
64 |
y=subset['y'],
|
65 |
label=subset['label'],
|
66 |
img=subset['img']
|
67 |
))
|
68 |
+
color = color_mapping[label]
|
69 |
+
if marker == "circle":
|
70 |
+
r = fig.circle('x', 'y', size=10, source=source,
|
71 |
+
fill_color=color, line_color=color,
|
72 |
+
legend_label=f"{label} (Real)")
|
73 |
+
elif marker == "square":
|
74 |
+
r = fig.square('x', 'y', size=6, source=source,
|
75 |
+
fill_color=color, line_color=color,
|
76 |
+
legend_label=f"{label} (Synthetic)")
|
77 |
+
renderers[label] = r
|
78 |
+
return renderers
|
79 |
+
|
80 |
+
def get_color_maps(selected_subsets: dict):
|
81 |
+
num_real = len(selected_subsets["real"])
|
82 |
+
red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
|
83 |
+
color_mapping_real = {label: red_palette[i] for i, label in enumerate(sorted(selected_subsets["real"]))}
|
84 |
+
|
85 |
+
num_es = len(selected_subsets["es-digital-seq"])
|
86 |
+
blue_palette = Blues9[:num_es] if num_es <= 9 else (Blues9 * ((num_es // 9) + 1))[:num_es]
|
87 |
+
color_mapping_es = {label: blue_palette[i] for i, label in enumerate(sorted(selected_subsets["es-digital-seq"]))}
|
88 |
|
89 |
+
return {"real": color_mapping_real, "es-digital-seq": color_mapping_es}
|
|
|
|
|
90 |
|
91 |
+
def split_versions(df_combined, reduced):
|
92 |
+
df_combined['x'] = reduced[:, 0]
|
93 |
+
df_combined['y'] = reduced[:, 1]
|
94 |
+
df_real = df_combined[df_combined["version"] == "real"].copy()
|
95 |
+
df_es = df_combined[df_combined["version"] == "es_digital_seq"].copy()
|
96 |
+
unique_real = sorted(df_real['label'].unique().tolist())
|
97 |
+
unique_es = sorted(df_es['label'].unique().tolist())
|
98 |
+
return {"real": df_real, "es-digital-seq": df_es}, {"real": unique_real, "es-digital-seq": unique_es}
|
99 |
|
100 |
+
def create_figure(dfs_reduced, selected_subsets: dict, color_maps: dict):
|
101 |
+
fig = figure(width=400, height=400, tooltips=TOOLTIPS, title="")
|
102 |
+
real_renderers = add_dataset_to_fig(fig, dfs_reduced["real"], selected_subsets["real"],
|
103 |
+
marker="circle", color_mapping=color_maps["real"])
|
104 |
+
synthetic_renderers = add_dataset_to_fig(fig, dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"],
|
105 |
+
marker="square", color_mapping=color_maps["es-digital-seq"])
|
106 |
+
fig.legend.location = "top_right"
|
107 |
+
fig.legend.click_policy = "hide"
|
108 |
+
return fig, real_renderers, synthetic_renderers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
def calculate_cluster_centers(df: pd.DataFrame, selected_labels: list) -> dict:
|
111 |
+
centers = {}
|
112 |
+
for label in selected_labels:
|
113 |
+
subset = df[df['label'] == label]
|
114 |
+
if not subset.empty:
|
115 |
+
centers[label] = (subset['x'].mean(), subset['y'].mean())
|
116 |
+
return centers
|
|
|
|
|
|
|
117 |
|
118 |
+
def compute_distances(centers_es: dict, centers_real: dict) -> pd.DataFrame:
|
119 |
+
distances = {}
|
120 |
+
for es_label, (x_es, y_es) in centers_es.items():
|
121 |
+
distances[es_label] = {}
|
122 |
+
for real_label, (x_real, y_real) in centers_real.items():
|
123 |
+
distances[es_label][real_label] = np.sqrt((x_es - x_real)**2 + (y_es - y_real)**2)
|
124 |
+
return pd.DataFrame(distances).T
|
125 |
|
126 |
+
def create_table(df_distances):
|
127 |
+
df_table = df_distances.copy()
|
128 |
+
df_table.reset_index(inplace=True)
|
129 |
+
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
|
130 |
+
source_table = ColumnDataSource(df_table)
|
131 |
+
columns = [TableColumn(field='Synthetic', title='Synthetic')]
|
132 |
+
for col in df_table.columns:
|
133 |
+
if col != 'Synthetic':
|
134 |
+
columns.append(TableColumn(field=col, title=col))
|
135 |
+
row_height = 28
|
136 |
+
header_height = 30
|
137 |
+
total_height = header_height + len(df_table) * row_height
|
138 |
+
|
139 |
+
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
|
140 |
+
return data_table, df_table, source_table
|
141 |
+
|
142 |
+
# Funci贸n que ejecuta todo el proceso para un modelo determinado
|
143 |
+
def run_model(model_name):
|
144 |
+
embeddings = load_embeddings(model_name)
|
145 |
+
if embeddings is None:
|
146 |
+
return
|
147 |
+
|
148 |
+
# Asignamos la versi贸n para distinguir en el split
|
149 |
+
embeddings["real"]["version"] = "real"
|
150 |
+
embeddings["es-digital-seq"]["version"] = "es_digital_seq"
|
151 |
+
embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
|
152 |
+
df_combined = pd.concat([embeddings["real"], embeddings["es-digital-seq"]], ignore_index=True)
|
153 |
|
154 |
+
st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
|
155 |
+
reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=model_name)
|
156 |
+
if reduction_method == "PCA":
|
157 |
+
reducer = PCA(n_components=2)
|
158 |
else:
|
159 |
+
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
|
160 |
+
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
|
163 |
+
selected_subsets = {"real": unique_subsets["real"], "es-digital-seq": unique_subsets["es-digital-seq"]}
|
164 |
+
color_maps = get_color_maps(selected_subsets)
|
165 |
|
166 |
+
fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, selected_subsets, color_maps)
|
167 |
+
centers_real = calculate_cluster_centers(dfs_reduced["real"], selected_subsets["real"])
|
168 |
+
centers_es = calculate_cluster_centers(dfs_reduced["es-digital-seq"], selected_subsets["es-digital-seq"])
|
169 |
+
df_distances = compute_distances(centers_es, centers_real)
|
170 |
+
data_table, df_table, source_table = create_table(df_distances)
|
171 |
+
real_subset_names = list(df_table.columns[1:])
|
172 |
+
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
|
173 |
+
reset_button = Button(label="Reset Colors", button_type="primary")
|
174 |
+
line_source = ColumnDataSource(data={'x': [], 'y': []})
|
175 |
+
fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
|
176 |
|
177 |
+
synthetic_centers_js = {k: [v[0], v[1]] for k, v in centers_es.items()}
|
178 |
+
real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
# Callback para actualizar el gr谩fico
|
181 |
+
callback = CustomJS(args=dict(source=source_table, line_source=line_source,
|
182 |
+
synthetic_centers=synthetic_centers_js,
|
183 |
+
real_centers=real_centers_js,
|
184 |
+
synthetic_renderers=synthetic_renderers,
|
185 |
+
real_renderers=real_renderers,
|
186 |
+
synthetic_colors=color_maps["es-digital-seq"],
|
187 |
+
real_colors=color_maps["real"],
|
188 |
+
real_select=real_select),
|
189 |
+
code="""
|
190 |
+
var selected = source.selected.indices;
|
191 |
+
if (selected.length > 0) {
|
192 |
+
var row = selected[0];
|
193 |
+
var data = source.data;
|
194 |
+
var synthetic_label = data['Synthetic'][row];
|
195 |
+
var real_label = real_select.value;
|
196 |
+
var syn_coords = synthetic_centers[synthetic_label];
|
197 |
+
var real_coords = real_centers[real_label];
|
198 |
+
line_source.data = { 'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]] };
|
199 |
+
line_source.change.emit();
|
200 |
+
|
201 |
+
for (var key in synthetic_renderers) {
|
202 |
+
if (synthetic_renderers.hasOwnProperty(key)) {
|
203 |
+
var renderer = synthetic_renderers[key];
|
204 |
+
if (key === synthetic_label) {
|
205 |
+
renderer.glyph.fill_color = synthetic_colors[key];
|
206 |
+
renderer.glyph.line_color = synthetic_colors[key];
|
207 |
+
} else {
|
208 |
+
renderer.glyph.fill_color = "lightgray";
|
209 |
+
renderer.glyph.line_color = "lightgray";
|
210 |
+
}
|
211 |
+
}
|
212 |
+
}
|
213 |
+
for (var key in real_renderers) {
|
214 |
+
if (real_renderers.hasOwnProperty(key)) {
|
215 |
+
var renderer = real_renderers[key];
|
216 |
+
if (key === real_label) {
|
217 |
+
renderer.glyph.fill_color = real_colors[key];
|
218 |
+
renderer.glyph.line_color = real_colors[key];
|
219 |
+
} else {
|
220 |
+
renderer.glyph.fill_color = "lightgray";
|
221 |
+
renderer.glyph.line_color = "lightgray";
|
222 |
+
}
|
223 |
+
}
|
224 |
+
}
|
225 |
+
} else {
|
226 |
+
line_source.data = { 'x': [], 'y': [] };
|
227 |
+
line_source.change.emit();
|
228 |
+
for (var key in synthetic_renderers) {
|
229 |
+
if (synthetic_renderers.hasOwnProperty(key)) {
|
230 |
+
var renderer = synthetic_renderers[key];
|
231 |
+
renderer.glyph.fill_color = synthetic_colors[key];
|
232 |
+
renderer.glyph.line_color = synthetic_colors[key];
|
233 |
+
}
|
234 |
+
}
|
235 |
+
for (var key in real_renderers) {
|
236 |
+
if (real_renderers.hasOwnProperty(key)) {
|
237 |
+
var renderer = real_renderers[key];
|
238 |
+
renderer.glyph.fill_color = real_colors[key];
|
239 |
+
renderer.glyph.line_color = real_colors[key];
|
240 |
+
}
|
241 |
+
}
|
242 |
+
}
|
243 |
+
""")
|
244 |
+
source_table.selected.js_on_change('indices', callback)
|
245 |
+
real_select.js_on_change('value', callback)
|
246 |
|
247 |
+
reset_callback = CustomJS(args=dict(line_source=line_source,
|
248 |
+
synthetic_renderers=synthetic_renderers,
|
249 |
+
real_renderers=real_renderers,
|
250 |
+
synthetic_colors=color_maps["es-digital-seq"],
|
251 |
+
real_colors=color_maps["real"]),
|
252 |
+
code="""
|
253 |
+
line_source.data = { 'x': [], 'y': [] };
|
254 |
+
line_source.change.emit();
|
255 |
+
for (var key in synthetic_renderers) {
|
256 |
+
if (synthetic_renderers.hasOwnProperty(key)) {
|
257 |
+
var renderer = synthetic_renderers[key];
|
258 |
+
renderer.glyph.fill_color = synthetic_colors[key];
|
259 |
+
renderer.glyph.line_color = synthetic_colors[key];
|
260 |
+
}
|
261 |
+
}
|
262 |
+
for (var key in real_renderers) {
|
263 |
+
if (real_renderers.hasOwnProperty(key)) {
|
264 |
+
var renderer = real_renderers[key];
|
265 |
+
renderer.glyph.fill_color = real_colors[key];
|
266 |
+
renderer.glyph.line_color = real_colors[key];
|
267 |
+
}
|
268 |
+
}
|
269 |
+
""")
|
270 |
+
reset_button.js_on_event("button_click", reset_callback)
|
271 |
+
|
272 |
+
buffer = io.BytesIO()
|
273 |
+
df_table.to_excel(buffer, index=False)
|
274 |
+
buffer.seek(0)
|
275 |
+
|
276 |
+
# Agregar un bot贸n de descarga en Streamlit
|
277 |
+
st.download_button(
|
278 |
+
label="Exportar tabla a Excel",
|
279 |
+
data=buffer,
|
280 |
+
file_name="tabla.xlsx",
|
281 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
282 |
)
|
283 |
|
284 |
+
layout = column(fig, column(real_select, reset_button, data_table))
|
285 |
+
st.bokeh_chart(layout, use_container_width=True)
|
286 |
+
|
287 |
+
|
288 |
+
# Funci贸n principal con tabs para cambiar de modelo
|
289 |
+
def main():
|
290 |
+
config_style()
|
291 |
+
tabs = st.tabs(["Donut", "Idefics2"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
with tabs[0]:
|
294 |
+
st.markdown('<h2 class="sub-title">Modelo Donut 馃</h2>', unsafe_allow_html=True)
|
295 |
+
run_model("Donut")
|
296 |
|
297 |
+
with tabs[1]:
|
298 |
+
st.markdown('<h2 class="sub-title">Modelo Idefics2 馃</h2>', unsafe_allow_html=True)
|
299 |
+
run_model("Idefics2")
|
300 |
+
|
301 |
+
if __name__ == "__main__":
|
302 |
+
main()
|
|
data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
data/donut_de_Rodrigo_merit_secret_all_embeddings.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|