File size: 7,021 Bytes
2975595
d06b252
df15a5f
d06b252
d6e6c98
8ab0a40
d06b252
 
 
57fff59
d06b252
 
8ab0a40
57fff59
d06b252
a857b53
df15a5f
a857b53
 
 
 
 
d06b252
a857b53
57fff59
d06b252
 
 
 
 
 
57fff59
d06b252
a857b53
d06b252
 
57fff59
8ab0a40
 
d6e6c98
df15a5f
 
a857b53
 
 
df15a5f
 
57fff59
d06b252
57fff59
d06b252
57fff59
 
 
d06b252
 
57fff59
 
 
d06b252
 
 
 
 
57fff59
 
 
d06b252
57fff59
d06b252
 
 
57fff59
8ab0a40
57fff59
d06b252
a857b53
57fff59
d06b252
57fff59
d06b252
57fff59
d06b252
a857b53
d06b252
 
57fff59
bc25066
a857b53
 
 
 
 
 
d06b252
 
a857b53
8ab0a40
a857b53
 
 
 
8ab0a40
57fff59
a857b53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df15a5f
57fff59
 
a857b53
 
 
 
 
 
 
 
 
 
 
 
 
8ab0a40
a857b53
57fff59
05755ed
d06b252
57fff59
d6e6c98
57fff59
 
 
 
 
 
 
 
a857b53
 
d06b252
 
57fff59
a857b53
d06b252
a857b53
57fff59
8ab0a40
57fff59
df15a5f
a857b53
57fff59
 
 
a857b53
 
 
 
 
 
 
 
 
 
 
 
 
57fff59
 
d06b252
8ab0a40
d06b252
a857b53
d06b252
a857b53
 
 
 
 
57fff59
df365ca
8ab0a40
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import fitz
import json
import gradio as gr
import pytesseract
import chromadb
import torch
import nltk
import traceback
import docx2txt
from PIL import Image
from io import BytesIO
from tqdm import tqdm
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, util
from nltk.tokenize import sent_tokenize

# Ensure punkt is downloaded
try:
    nltk.data.find("tokenizers/punkt")
except LookupError:
    nltk.download("punkt")

# Configuration
HF_TOKEN = os.getenv("HF_TOKEN")
MANUALS_DIR = "Manuals"
CHROMA_PATH = "chroma_store"
COLLECTION_NAME = "manual_chunks"
CHUNK_SIZE = 750
CHUNK_OVERLAP = 100
MAX_CONTEXT_CHUNKS = 3
MODEL_ID = "ibm-granite/granite-vision-3.2-2b"

# Device selection
device = "cuda" if torch.cuda.is_available() else "cpu"

# ---------------- Text Helpers ----------------
def clean(text):
    return "\n".join([line.strip() for line in text.splitlines() if line.strip()])

def split_sentences(text):
    try:
        return sent_tokenize(text)
    except:
        print("\u26a0\ufe0f Tokenizer fallback: simple split.")
        return text.split(". ")

def split_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
    chunks = []
    current_chunk, length = [], 0

    for sent in sentences:
        words = sent.split()
        if length + len(words) > max_tokens and current_chunk:
            chunks.append(" ".join(current_chunk))
            current_chunk = current_chunk[-overlap:]
            length = sum(len(s.split()) for s in current_chunk)
        current_chunk.append(sent)
        length += len(words)

    if current_chunk:
        chunks.append(" ".join(current_chunk))
    return chunks

# ---------------- File Readers ----------------
def extract_pdf_text(path):
    chunks = []
    try:
        doc = fitz.open(path)
        for i, page in enumerate(doc):
            text = page.get_text().strip()
            if not text:
                img = Image.open(BytesIO(page.get_pixmap(dpi=300).tobytes("png")))
                text = pytesseract.image_to_string(img)
            chunks.append((path, i + 1, clean(text)))
    except Exception as e:
        print("\u274c PDF read error:", path, e)
    return chunks

def extract_docx_text(path):
    try:
        return [(path, 1, clean(docx2txt.process(path)))]
    except Exception as e:
        print("\u274c DOCX read error:", path, e)
        return []

# ---------------- Embedding ----------------
def embed_all():
    try:
        embedder = SentenceTransformer("all-MiniLM-L6-v2")
        embedder.eval()
    except Exception as e:
        print("\u274c Failed to load SentenceTransformer:", e)
        return None, None

    try:
        client = chromadb.PersistentClient(path=CHROMA_PATH)
        client.delete_collection(COLLECTION_NAME)
        collection = client.get_or_create_collection(COLLECTION_NAME)
    except Exception as e:
        print("\u274c Failed to initialize ChromaDB:", e)
        return None, None

    docs, ids, metas = [], [], []
    print("\ud83d\udcc4 Processing manuals...")

    try:
        for fname in os.listdir(MANUALS_DIR):
            fpath = os.path.join(MANUALS_DIR, fname)
            if fname.lower().endswith(".pdf"):
                pages = extract_pdf_text(fpath)
            elif fname.lower().endswith(".docx"):
                pages = extract_docx_text(fpath)
            else:
                continue

            for path, page, text in pages:
                for i, chunk in enumerate(split_chunks(split_sentences(text))):
                    chunk_id = f"{fname}::{page}::{i}"
                    docs.append(chunk)
                    ids.append(chunk_id)
                    metas.append({"source": fname, "page": page})

                    if len(docs) >= 16:
                        embs = embedder.encode(docs).tolist()
                        collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
                        docs, ids, metas = [], [], []

        if docs:
            embs = embedder.encode(docs).tolist()
            collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)

        print(f"\u2705 Embedded {len(ids)} chunks.")
        return collection, embedder

    except Exception as e:
        print("\u274c Error during embedding:", e)
        return None, None

# ---------------- Model Setup ----------------
def load_model():
    try:
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_ID,
            token=HF_TOKEN,
            device_map="auto" if torch.cuda.is_available() else None,
            torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
        ).to(device)
        pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
        return pipe, tokenizer
    except Exception as e:
        print("\u274c Failed to load model:", e)
        return None, None

# ---------------- QA Logic ----------------
def ask_model(question, context, pipe, tokenizer):
    prompt = f"""Use only the following context to answer. If uncertain, say \"I don't know.\"

<context>
{context}
</context>

Q: {question}
A:"""
    output = pipe(prompt, max_new_tokens=512)[0]["generated_text"]
    return output.split("A:")[-1].strip()

def get_answer(question):
    if not all([embedder, db, model_pipe, model_tokenizer]):
        return "\u274c System not initialized. Check logs or try restarting the app."
    try:
        results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
        context = "\n\n".join(results["documents"][0])
        return ask_model(question, context, model_pipe, model_tokenizer)
    except Exception as e:
        print("\u274c Query error:", e)
        return f"Error: {e}"

# ---------------- UI ----------------
with gr.Blocks() as demo:
    gr.Markdown("## \ud83e\udd16 SmartManuals-AI (Granite 3.2-2B)")
    with gr.Row():
        question = gr.Textbox(label="Ask your question")
        ask = gr.Button("Ask")
    answer = gr.Textbox(label="Answer", lines=8)
    status = gr.Markdown(visible=False)

    def wrapped_get_answer(q):
        ans = get_answer(q)
        return ans, ""  # hide status after success

    ask.click(fn=wrapped_get_answer, inputs=question, outputs=[answer, status])

    # Show status on startup error
    if not all([embedder, db, model_pipe, model_tokenizer]):
        status.visible = True
        status.value = "\u26a0\ufe0f Initialization failed. Check logs or your HF_TOKEN."

# Embed + Load Model at Startup
try:
    db, embedder = embed_all()
except Exception as e:
    print("\u274c Embedding failed:", e)
    db, embedder = None, None

try:
    model_pipe, model_tokenizer = load_model()
except Exception as e:
    print("\u274c Model loading failed:", e)
    model_pipe, model_tokenizer = None, None

if __name__ == "__main__":
    demo.launch()