Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import scipy.io.wavfile as wavfile
|
4 |
+
|
5 |
+
|
6 |
+
# Use a pipeline as a high-level helper
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# used in local
|
10 |
+
# model_path = "../models/models--facebook--detr-resnet-50/snapshots/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b"
|
11 |
+
|
12 |
+
# tts_model_path = ("../Models/models--kakao-enterprise--vits-ljs/snapshots"
|
13 |
+
# "/3bcb8321394f671bd948ebf0d086d694dda95464")
|
14 |
+
|
15 |
+
|
16 |
+
narrator = pipeline("text-to-speech",
|
17 |
+
model="kakao-enterprise/vits-ljs")
|
18 |
+
|
19 |
+
object_detector = pipeline("object-detection",
|
20 |
+
model="facebook/detr-resnet-50")
|
21 |
+
|
22 |
+
# object_detector = pipeline("object-detection",
|
23 |
+
# model=model_path)
|
24 |
+
#
|
25 |
+
# narrator = pipeline("text-to-speech",
|
26 |
+
# model=tts_model_path)
|
27 |
+
|
28 |
+
# Define the function to generate audio from text
|
29 |
+
def generate_audio(text):
|
30 |
+
# Generate the narrated text
|
31 |
+
narrated_text = narrator(text)
|
32 |
+
|
33 |
+
# Save the audio to a WAV file
|
34 |
+
wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
|
35 |
+
data=narrated_text["audio"][0])
|
36 |
+
|
37 |
+
# Return the path to the saved audio file
|
38 |
+
return "output.wav"
|
39 |
+
|
40 |
+
|
41 |
+
def read_objects(detection_objects):
|
42 |
+
# Initialize counters for each object label
|
43 |
+
object_counts = {}
|
44 |
+
|
45 |
+
# Count the occurrences of each label
|
46 |
+
for detection in detection_objects:
|
47 |
+
label = detection['label']
|
48 |
+
if label in object_counts:
|
49 |
+
object_counts[label] += 1
|
50 |
+
else:
|
51 |
+
object_counts[label] = 1
|
52 |
+
|
53 |
+
# Generate the response string
|
54 |
+
response = "This picture contains"
|
55 |
+
labels = list(object_counts.keys())
|
56 |
+
for i, label in enumerate(labels):
|
57 |
+
response += f" {object_counts[label]} {label}"
|
58 |
+
if object_counts[label] > 1:
|
59 |
+
response += "s"
|
60 |
+
if i < len(labels) - 2:
|
61 |
+
response += ","
|
62 |
+
elif i == len(labels) - 2:
|
63 |
+
response += " and"
|
64 |
+
|
65 |
+
response += "."
|
66 |
+
|
67 |
+
return response
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def draw_bounding_boxes(image, detections, font_path=None, font_size=20):
|
72 |
+
"""
|
73 |
+
Draws bounding boxes on the given image based on the detections.
|
74 |
+
:param image: PIL.Image object
|
75 |
+
:param detections: List of detection results, where each result is a dictionary containing
|
76 |
+
'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin',
|
77 |
+
'ymin', 'xmax', 'ymax'.
|
78 |
+
:param font_path: Path to the TrueType font file to use for text.
|
79 |
+
:param font_size: Size of the font to use for text.
|
80 |
+
:return: PIL.Image object with bounding boxes drawn.
|
81 |
+
"""
|
82 |
+
# Make a copy of the image to draw on
|
83 |
+
draw_image = image.copy()
|
84 |
+
draw = ImageDraw.Draw(draw_image)
|
85 |
+
|
86 |
+
# Load custom font or default font if path not provided
|
87 |
+
if font_path:
|
88 |
+
font = ImageFont.truetype(font_path, font_size)
|
89 |
+
else:
|
90 |
+
# When font_path is not provided, load default font but it's size is fixed
|
91 |
+
font = ImageFont.load_default()
|
92 |
+
# Increase font size workaround by using a TTF font file, if needed, can download and specify the path
|
93 |
+
|
94 |
+
for detection in detections:
|
95 |
+
box = detection['box']
|
96 |
+
xmin = box['xmin']
|
97 |
+
ymin = box['ymin']
|
98 |
+
xmax = box['xmax']
|
99 |
+
ymax = box['ymax']
|
100 |
+
|
101 |
+
# Draw the bounding box
|
102 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
103 |
+
|
104 |
+
# Optionally, you can also draw the label and score
|
105 |
+
label = detection['label']
|
106 |
+
score = detection['score']
|
107 |
+
text = f"{label} {score:.2f}"
|
108 |
+
|
109 |
+
# Draw text with background rectangle for visibility
|
110 |
+
if font_path: # Use the custom font with increased size
|
111 |
+
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
112 |
+
else:
|
113 |
+
# Calculate text size using the default font
|
114 |
+
text_size = draw.textbbox((xmin, ymin), text)
|
115 |
+
|
116 |
+
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
117 |
+
draw.text((xmin, ymin), text, fill="white", font=font)
|
118 |
+
|
119 |
+
return draw_image
|
120 |
+
|
121 |
+
|
122 |
+
def detect_object(image):
|
123 |
+
raw_image = image
|
124 |
+
output = object_detector(raw_image)
|
125 |
+
processed_image = draw_bounding_boxes(raw_image, output)
|
126 |
+
natural_text = read_objects(output)
|
127 |
+
processed_audio = generate_audio(natural_text)
|
128 |
+
return processed_image, processed_audio
|
129 |
+
|
130 |
+
|
131 |
+
demo = gr.Interface(fn=detect_object,
|
132 |
+
inputs=[gr.Image(label="Select Image",type="pil")],
|
133 |
+
outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")],
|
134 |
+
title="@cygon: Object Detector with Audio",
|
135 |
+
description="THIS APPLICATION WILL BE USED TO HIGHLIGHT OBJECTS AND GIVES AUDIO DESCRIPTION FOR THE PROVIDED INPUT IMAGE.")
|
136 |
+
demo.launch()
|
137 |
+
|
138 |
+
# print(output)
|