File size: 1,577 Bytes
f7a6c6e
 
e1f4cc8
b4b8db9
f9dba88
b4b8db9
4aad3a5
e1f4cc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# import os
# os.system("pip install scipy transformers timm  torch torchvision torchaudio phonemizer espeak --upgrade torch torchvision torchaudio transformers==4.39.3 gradio pillow")

import os
os.system("pip install scipy transformers timm  torch torchvision torchaudio phonemizer espeak  gradio")

import torch
import gradio as gr
from PIL import Image
import scipy.io.wavfile as wavfile

# Use a pipeline as a high-level helper
from transformers import pipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)

narrator = pipeline("text-to-speech",
                    model="kakao-enterprise/vits-ljs")

# Define the function to generate audio from text
def generate_audio(text):
    # Generate the narrated text
    narrated_text = narrator(text)

    # Save the audio to a WAV file
    wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
                  data=narrated_text["audio"][0])

    # Return the path to the saved audio file
    return "output.wav"


def caption_my_image(pil_image):
    semantics = caption_image(images=pil_image)[0]['generated_text']
    return generate_audio(semantics)

demo = gr.Interface(fn=caption_my_image,
                    inputs=[gr.Image(label="Select Image",type="pil")],
                    outputs=[gr.Audio(label="Image Captions")],
                    title="@cygon: Image captioning",
                    description="THIS APPLICATION WILL BE USED TO CAPTION THE IMAGE IN AUDIO.")
demo.launch()