File size: 5,864 Bytes
3c55139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torchvision.transforms import Resize
from transformers import AutoConfig, AutoModel, Siglip2VisionConfig, Siglip2VisionModel

from . import models
from .utils import ScalingLayer


class TextAlignedTokenizer(nn.Module):
    def __init__(
        self, 
        bottleneck,
        bottleneck_token_num=256,
        input_size=384,
        teacher='google/siglip2-so400m-patch14-384',
        input_type='quant', # choose from ['quant', 'rec', 'indices']
        pool_scale=1, # choose from [1, 2, 3]
        decoder_depth=3,
        select_layer_id=-2,
        *args,
        **kwargs
    ):
        super().__init__()
        self.input_size = input_size
        self.bottleneck_token_num = bottleneck_token_num
        self.teacher = teacher
        self.input_type = input_type
        self.pool_scale = pool_scale
        self.decoder_depth = decoder_depth
        self.select_layer_id = select_layer_id
       
        self.bottleneck_dim = bottleneck['args']['bottleneck_dim']

        self.encoder_config = AutoConfig.from_pretrained(teacher)
        self.encoder = AutoModel.from_config(self.encoder_config).vision_model         
        
        self.encoder_hidden_dim = self.encoder.config.hidden_size

        self.decoder_config = Siglip2VisionConfig()
        self.decoder_config.update({
            'patch_size': 1,
            'num_hidden_layers': self.decoder_depth,
            'num_channels': self.bottleneck_dim,
            'hidden_size': self.encoder_hidden_dim,
        })
        self.decoder = Siglip2VisionModel(self.decoder_config)

        self.encode_task_layer = nn.Sequential(
            nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim),
            nn.Tanh())
        self.decode_task_layer = nn.Sequential(
            nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim),
            nn.Tanh(),
            nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim))

        bottleneck_args = {
            'token_nums': self.bottleneck_token_num, 
            'input_dim': self.encoder_hidden_dim, 
            'output_dim': self.bottleneck_dim}
        self.bottleneck = models.make(bottleneck, args=bottleneck_args)

        self.scale_layer = ScalingLayer(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])   
        self.image_resize = Resize((self.input_size, self.input_size))
       
    def set_vq_eval_deterministic(self, deterministic=True):
        self.bottleneck.regularizer.set_eval_deterministic(deterministic)

    @property
    def device(self):
        return next(self.parameters()).device

    @property
    def dtype(self):
        return next(self.parameters()).dtype
    
    @classmethod
    def from_checkpoint(cls, ckpt, load_teacher=True, **kwargs):
        ckpt = torch.load(ckpt, map_location='cpu')
        ckpt_kwargs = ckpt["model"]["args"]
        model = cls(**kwargs, **ckpt_kwargs)
        sd = ckpt["model"]["sd"]
        if not load_teacher:
            sd = {k: v for k, v in sd.items() if not k.startswith('teacher')}
        model.load_state_dict(sd, strict=True)
        return model

    def encode(self, x, **kwargs):
        if x.ndim == 5:
            x = rearrange(x, 'b c t h w -> (b t) c h w')
        x = self.scale_layer(x)
        if tuple(x.shape[-2:]) != (self.input_size, self.input_size):
            x = self.image_resize(x)
        vq_feats = self.encoder(x, output_hidden_states=True).hidden_states[self.select_layer_id]

        pool_scale = self.pool_scale
        pool_scale = kwargs.get("pool_scale", pool_scale)
        if pool_scale != 1:
            vq_feats = self.avg_pool(vq_feats, pool_scale)
        vq_feats = self.encode_task_layer(vq_feats.to(x))
        
        bottleneck_out = self.bottleneck(vq_feats)
        z = bottleneck_out.pop('output')

        return {'encoded': z, 'pool_scale': pool_scale, 'vq_feats': vq_feats, **bottleneck_out}

    def avg_pool(self, z, pool_scale=1):
        if z.ndim == 3:
            b, n, c = z.shape
            p = int(n ** 0.5)
            z = rearrange(z, 'b (p1 p2) c -> b c p1 p2', p1=p, p2=p)
        else:
            b, c, p, _ = z.shape
        p_s = int(p // pool_scale)
        z = F.avg_pool2d(
            z,
            kernel_size=(pool_scale, pool_scale),
            stride=(pool_scale, pool_scale)
        ).contiguous()
        z = rearrange(z, 'b c p1 p2 -> b (p1 p2) c')
        return z

    def decode(self, z):
        if z.ndim == 4:
            z = rearrange(z, 'b c p1 p2 -> b (p1 p2) c')
        attention_mask = torch.ones(z.shape[:2], dtype=torch.int, device=z.device)
        p = int(z.shape[1]**0.5)
        spatial_shape = torch.tensor([[p, p]]*z.shape[0], device=self.device)
        z = self.decoder(z, attention_mask, spatial_shape, output_hidden_states=True).last_hidden_state
        z = self.decode_task_layer(z)
        return z

    def decode_from_bottleneck(self, bottleneck_rep):
        z = self.bottleneck.decode(bottleneck_rep) # (b, n, c)
        p = int(z.shape[1]**0.5)
        z = rearrange(z, 'b (p1 p2) c -> b c p1 p2', p1=p, p2=p)
        return self.decode(z)

    def forward(self, data, **kwargs):
        # data: video in shape (b, c, t, h, w)
        encode_output = self.encode(data, **kwargs)
        vq_feats = encode_output['encoded']
        p = int(vq_feats.shape[1] ** 0.5)
        vq_feats = rearrange(vq_feats, 'b (h w) c -> b c h w', h=p, w=p)
        pred_feats = self.decode(vq_feats)

        if self.input_type == 'quant':
            z = encode_output["regularized_z"] # [b, n, c]
        elif self.input_type == 'indices':
            z = encode_output["bottleneck_rep"] # [b, n]
        elif self.input_type == 'rec':
            z = pred_feats # [b, n, c]
        encode_output['encoded'] = z
        return encode_output