Spaces:
Runtime error
Runtime error
File size: 5,864 Bytes
3c55139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torchvision.transforms import Resize
from transformers import AutoConfig, AutoModel, Siglip2VisionConfig, Siglip2VisionModel
from . import models
from .utils import ScalingLayer
class TextAlignedTokenizer(nn.Module):
def __init__(
self,
bottleneck,
bottleneck_token_num=256,
input_size=384,
teacher='google/siglip2-so400m-patch14-384',
input_type='quant', # choose from ['quant', 'rec', 'indices']
pool_scale=1, # choose from [1, 2, 3]
decoder_depth=3,
select_layer_id=-2,
*args,
**kwargs
):
super().__init__()
self.input_size = input_size
self.bottleneck_token_num = bottleneck_token_num
self.teacher = teacher
self.input_type = input_type
self.pool_scale = pool_scale
self.decoder_depth = decoder_depth
self.select_layer_id = select_layer_id
self.bottleneck_dim = bottleneck['args']['bottleneck_dim']
self.encoder_config = AutoConfig.from_pretrained(teacher)
self.encoder = AutoModel.from_config(self.encoder_config).vision_model
self.encoder_hidden_dim = self.encoder.config.hidden_size
self.decoder_config = Siglip2VisionConfig()
self.decoder_config.update({
'patch_size': 1,
'num_hidden_layers': self.decoder_depth,
'num_channels': self.bottleneck_dim,
'hidden_size': self.encoder_hidden_dim,
})
self.decoder = Siglip2VisionModel(self.decoder_config)
self.encode_task_layer = nn.Sequential(
nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim),
nn.Tanh())
self.decode_task_layer = nn.Sequential(
nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim),
nn.Tanh(),
nn.Linear(self.encoder_hidden_dim, self.encoder_hidden_dim))
bottleneck_args = {
'token_nums': self.bottleneck_token_num,
'input_dim': self.encoder_hidden_dim,
'output_dim': self.bottleneck_dim}
self.bottleneck = models.make(bottleneck, args=bottleneck_args)
self.scale_layer = ScalingLayer(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
self.image_resize = Resize((self.input_size, self.input_size))
def set_vq_eval_deterministic(self, deterministic=True):
self.bottleneck.regularizer.set_eval_deterministic(deterministic)
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
@classmethod
def from_checkpoint(cls, ckpt, load_teacher=True, **kwargs):
ckpt = torch.load(ckpt, map_location='cpu')
ckpt_kwargs = ckpt["model"]["args"]
model = cls(**kwargs, **ckpt_kwargs)
sd = ckpt["model"]["sd"]
if not load_teacher:
sd = {k: v for k, v in sd.items() if not k.startswith('teacher')}
model.load_state_dict(sd, strict=True)
return model
def encode(self, x, **kwargs):
if x.ndim == 5:
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.scale_layer(x)
if tuple(x.shape[-2:]) != (self.input_size, self.input_size):
x = self.image_resize(x)
vq_feats = self.encoder(x, output_hidden_states=True).hidden_states[self.select_layer_id]
pool_scale = self.pool_scale
pool_scale = kwargs.get("pool_scale", pool_scale)
if pool_scale != 1:
vq_feats = self.avg_pool(vq_feats, pool_scale)
vq_feats = self.encode_task_layer(vq_feats.to(x))
bottleneck_out = self.bottleneck(vq_feats)
z = bottleneck_out.pop('output')
return {'encoded': z, 'pool_scale': pool_scale, 'vq_feats': vq_feats, **bottleneck_out}
def avg_pool(self, z, pool_scale=1):
if z.ndim == 3:
b, n, c = z.shape
p = int(n ** 0.5)
z = rearrange(z, 'b (p1 p2) c -> b c p1 p2', p1=p, p2=p)
else:
b, c, p, _ = z.shape
p_s = int(p // pool_scale)
z = F.avg_pool2d(
z,
kernel_size=(pool_scale, pool_scale),
stride=(pool_scale, pool_scale)
).contiguous()
z = rearrange(z, 'b c p1 p2 -> b (p1 p2) c')
return z
def decode(self, z):
if z.ndim == 4:
z = rearrange(z, 'b c p1 p2 -> b (p1 p2) c')
attention_mask = torch.ones(z.shape[:2], dtype=torch.int, device=z.device)
p = int(z.shape[1]**0.5)
spatial_shape = torch.tensor([[p, p]]*z.shape[0], device=self.device)
z = self.decoder(z, attention_mask, spatial_shape, output_hidden_states=True).last_hidden_state
z = self.decode_task_layer(z)
return z
def decode_from_bottleneck(self, bottleneck_rep):
z = self.bottleneck.decode(bottleneck_rep) # (b, n, c)
p = int(z.shape[1]**0.5)
z = rearrange(z, 'b (p1 p2) c -> b c p1 p2', p1=p, p2=p)
return self.decode(z)
def forward(self, data, **kwargs):
# data: video in shape (b, c, t, h, w)
encode_output = self.encode(data, **kwargs)
vq_feats = encode_output['encoded']
p = int(vq_feats.shape[1] ** 0.5)
vq_feats = rearrange(vq_feats, 'b (h w) c -> b c h w', h=p, w=p)
pred_feats = self.decode(vq_feats)
if self.input_type == 'quant':
z = encode_output["regularized_z"] # [b, n, c]
elif self.input_type == 'indices':
z = encode_output["bottleneck_rep"] # [b, n]
elif self.input_type == 'rec':
z = pred_feats # [b, n, c]
encode_output['encoded'] = z
return encode_output |