import os import numpy as np import cv2 import kiui import trimesh import torch import rembg from datetime import datetime import subprocess import gradio as gr try: # running on Hugging Face Spaces import spaces except ImportError: # running locally, use a dummy space class spaces: class GPU: def __init__(self, duration=60): self.duration = duration def __call__(self, func): return func from flow.model import Model from flow.configs.schema import ModelConfig from flow.utils import get_random_color, recenter_foreground from vae.utils import postprocess_mesh # download checkpoints from huggingface_hub import hf_hub_download flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt") vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt") TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32) MAX_SEED = np.iinfo(np.int32).max bg_remover = rembg.new_session() # model config model_config = ModelConfig( vae_conf="vae.configs.part_woenc", vae_ckpt_path=vae_ckpt_path, qknorm=True, qknorm_type="RMSNorm", use_pos_embed=False, dino_model="dinov2_vitg14", hidden_dim=1536, flow_shift=3.0, logitnorm_mean=1.0, logitnorm_std=1.0, latent_size=4096, use_parts=True, ) # instantiate model model = Model(model_config).eval().cuda().bfloat16() # load weight ckpt_dict = torch.load(flow_ckpt_path, weights_only=True) model.load_state_dict(ckpt_dict, strict=True) # get random seed def get_random_seed(randomize_seed, seed): if randomize_seed: seed = np.random.randint(0, MAX_SEED) return seed # process image @spaces.GPU(duration=10) def process_image(image_path): image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) if image.shape[-1] == 4: image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) else: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # bg removal if there is no alpha channel image = rembg.remove(image, session=bg_remover) # [H, W, 4] mask = image[..., -1] > 0 image = recenter_foreground(image, mask, border_ratio=0.1) image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA) return image # process generation @spaces.GPU(duration=90) def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000): # seed kiui.seed_everything(seed) # output path os.makedirs("output", exist_ok=True) output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb" # input image (assume processed to RGBA uint8) image = input_image.astype(np.float32) / 255.0 image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda() data = {"cond_images": image_tensor} with torch.inference_mode(): results = model(data, num_steps=num_steps, cfg_scale=cfg_scale) latent = results["latent"] # query mesh data_part0 = {"latent": latent[:, : model.config.latent_size, :]} data_part1 = {"latent": latent[:, model.config.latent_size :, :]} with torch.inference_mode(): results_part0 = model.vae(data_part0, resolution=grid_res) results_part1 = model.vae(data_part1, resolution=grid_res) if not simplify_mesh: target_num_faces = -1 vertices, faces = results_part0["meshes"][0] mesh_part0 = trimesh.Trimesh(vertices, faces) mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces) parts = mesh_part0.split(only_watertight=False) vertices, faces = results_part1["meshes"][0] mesh_part1 = trimesh.Trimesh(vertices, faces) mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces) parts.extend(mesh_part1.split(only_watertight=False)) # split connected components and assign different colors for j, part in enumerate(parts): # each component uses a random color part.visual.vertex_colors = get_random_color(j, use_float=True) mesh = trimesh.Scene(parts) # export the whole mesh mesh.export(output_glb_path) return output_glb_path # gradio UI _TITLE = '''🎨 Image to 3D Model - Bring Your Images to Life!''' _DESCRIPTION = '''

✨ Transform 2D Images into Stunning 3D Models with One Click ✨

### 🚀 Key Features: - **Smart Recognition**: Automatically identifies objects in images and generates corresponding 3D models - **Part Separation**: Generated 3D models are automatically decomposed into multiple parts, each displayed in different colors - **Background Removal**: Automatically removes image backgrounds to ensure only the main object is modeled - **Universal Format**: Outputs standard GLB format, compatible with various 3D software ### 📖 How to Use: 1. **Upload Image**: Click the "Upload Image" area on the left to upload your picture (supports JPG, PNG, etc.) 2. **Adjust Settings** (Optional): - Higher inference steps = better quality but slower (default 50 recommended) - If unsatisfied with results, try different random seeds 3. **Click Generate**: Click the "Generate 3D Model" button and wait about 1-2 minutes 4. **View Results**: The 3D model will appear on the right, drag with mouse to rotate and view ### 💡 Tips for Best Results: - Clear subjects with simple backgrounds work best - Front-facing or 45-degree angle photos recommended - If results aren't ideal, try adjusting the random seed and regenerating - Check the example images below to see optimal input types ### 🎯 Use Cases: - **Product Display**: Convert product images to 3D models for e-commerce - **Creative Design**: Quickly obtain 3D prototypes for design reference - **Game Development**: Generate initial 3D models for game assets - **Educational Demos**: Convert flat diagrams to 3D for better spatial understanding ''' block = gr.Blocks(title=_TITLE).queue() with block: with gr.Row(): with gr.Column(): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(): with gr.Column(scale=1): with gr.Row(): # input image input_image = gr.Image( label="📷 Upload Image", type="filepath" ) seg_image = gr.Image( label="🔍 Processed Image", type="numpy", interactive=False, image_mode="RGBA" ) with gr.Accordion("⚙️ Advanced Settings", open=False): gr.Markdown(""" ### Parameter Guide: - **Inference Steps**: More steps = higher quality but longer processing time - **CFG Scale**: Controls generation accuracy, higher values stay closer to original - **Grid Resolution**: 3D model detail level, higher = more detailed - **Random Seed**: Same seed produces same results, useful for reproducing effects - **Simplify Mesh**: Reduces model face count for lightweight applications """) # inference steps num_steps = gr.Slider( label="Inference Steps", minimum=1, maximum=100, step=1, value=50, info="Recommended: 30-70" ) # cfg scale cfg_scale = gr.Slider( label="CFG Scale", minimum=2, maximum=10, step=0.1, value=7.0, info="Recommended: 6-8" ) # grid resolution input_grid_res = gr.Slider( label="Grid Resolution", minimum=256, maximum=512, step=1, value=384, info="Recommended: 384" ) # random seed with gr.Row(): randomize_seed = gr.Checkbox( label="Randomize Seed", value=True, info="Use different seed each time" ) seed = gr.Slider( label="Seed Value", minimum=0, maximum=MAX_SEED, step=1, value=0 ) # simplify mesh with gr.Row(): simplify_mesh = gr.Checkbox( label="Simplify Mesh", value=False, info="Reduce model complexity" ) target_num_faces = gr.Slider( label="Target Face Count", minimum=10000, maximum=1000000, step=1000, value=100000, info="Lower count = simpler model" ) # gen button button_gen = gr.Button("🎯 Generate 3D Model", variant="primary", size="lg") with gr.Column(scale=1): # glb file output_model = gr.Model3D( label="🎭 3D Model Preview", height=512 ) gr.Markdown(""" ### 📌 Controls: - 🖱️ **Left Click & Drag**: Rotate model - 🖱️ **Right Click & Drag**: Pan view - 🖱️ **Scroll Wheel**: Zoom in/out - 📥 Click top-right corner to download GLB file """) with gr.Row(): gr.Markdown("### 🖼️ Example Images (Click to Try):") gr.Examples( examples=[ ["examples/rabbit.png"], ["examples/robot.png"], ["examples/teapot.png"], ["examples/barrel.png"], ["examples/cactus.png"], ["examples/cyan_car.png"], ["examples/pickup.png"], ["examples/swivelchair.png"], ["examples/warhammer.png"], ], fn=process_image, inputs=[input_image], outputs=[seg_image], cache_examples=False ) gr.Markdown(""" --- ### ⚠️ Important Notes: - Generation takes 1-2 minutes, please be patient - Best results with clear, prominent subjects - Generated models may need further optimization in professional 3D software - Each colored section represents an independent 3D part ### 🤝 Technical Support: Powered by NVIDIA PartPacker technology. For issues, please refer to the [official documentation](https://research.nvidia.com/labs/dir/partpacker/) """) button_gen.click( process_image, inputs=[input_image], outputs=[seg_image] ).then( get_random_seed, inputs=[randomize_seed, seed], outputs=[seed] ).then( process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model] ) block.launch()