import os
import numpy as np
import cv2
import kiui
import trimesh
import torch
import rembg
from datetime import datetime
import subprocess
import gradio as gr
try:
# running on Hugging Face Spaces
import spaces
except ImportError:
# running locally, use a dummy space
class spaces:
class GPU:
def __init__(self, duration=60):
self.duration = duration
def __call__(self, func):
return func
from flow.model import Model
from flow.configs.schema import ModelConfig
from flow.utils import get_random_color, recenter_foreground
from vae.utils import postprocess_mesh
# download checkpoints
from huggingface_hub import hf_hub_download
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt")
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt")
TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32)
MAX_SEED = np.iinfo(np.int32).max
bg_remover = rembg.new_session()
# model config
model_config = ModelConfig(
vae_conf="vae.configs.part_woenc",
vae_ckpt_path=vae_ckpt_path,
qknorm=True,
qknorm_type="RMSNorm",
use_pos_embed=False,
dino_model="dinov2_vitg14",
hidden_dim=1536,
flow_shift=3.0,
logitnorm_mean=1.0,
logitnorm_std=1.0,
latent_size=4096,
use_parts=True,
)
# instantiate model
model = Model(model_config).eval().cuda().bfloat16()
# load weight
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True)
model.load_state_dict(ckpt_dict, strict=True)
# get random seed
def get_random_seed(randomize_seed, seed):
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
return seed
# process image
@spaces.GPU(duration=10)
def process_image(image_path):
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if image.shape[-1] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# bg removal if there is no alpha channel
image = rembg.remove(image, session=bg_remover) # [H, W, 4]
mask = image[..., -1] > 0
image = recenter_foreground(image, mask, border_ratio=0.1)
image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA)
return image
# process generation
@spaces.GPU(duration=90)
def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000):
# seed
kiui.seed_everything(seed)
# output path
os.makedirs("output", exist_ok=True)
output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb"
# input image (assume processed to RGBA uint8)
image = input_image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background
image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda()
data = {"cond_images": image_tensor}
with torch.inference_mode():
results = model(data, num_steps=num_steps, cfg_scale=cfg_scale)
latent = results["latent"]
# query mesh
data_part0 = {"latent": latent[:, : model.config.latent_size, :]}
data_part1 = {"latent": latent[:, model.config.latent_size :, :]}
with torch.inference_mode():
results_part0 = model.vae(data_part0, resolution=grid_res)
results_part1 = model.vae(data_part1, resolution=grid_res)
if not simplify_mesh:
target_num_faces = -1
vertices, faces = results_part0["meshes"][0]
mesh_part0 = trimesh.Trimesh(vertices, faces)
mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T
mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces)
parts = mesh_part0.split(only_watertight=False)
vertices, faces = results_part1["meshes"][0]
mesh_part1 = trimesh.Trimesh(vertices, faces)
mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T
mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces)
parts.extend(mesh_part1.split(only_watertight=False))
# split connected components and assign different colors
for j, part in enumerate(parts):
# each component uses a random color
part.visual.vertex_colors = get_random_color(j, use_float=True)
mesh = trimesh.Scene(parts)
# export the whole mesh
mesh.export(output_glb_path)
return output_glb_path
# gradio UI
_TITLE = '''🎨 Image to 3D Model - Bring Your Images to Life!'''
_DESCRIPTION = '''
✨ Transform 2D Images into Stunning 3D Models with One Click ✨
### 🚀 Key Features:
- **Smart Recognition**: Automatically identifies objects in images and generates corresponding 3D models
- **Part Separation**: Generated 3D models are automatically decomposed into multiple parts, each displayed in different colors
- **Background Removal**: Automatically removes image backgrounds to ensure only the main object is modeled
- **Universal Format**: Outputs standard GLB format, compatible with various 3D software
### 📖 How to Use:
1. **Upload Image**: Click the "Upload Image" area on the left to upload your picture (supports JPG, PNG, etc.)
2. **Adjust Settings** (Optional):
- Higher inference steps = better quality but slower (default 50 recommended)
- If unsatisfied with results, try different random seeds
3. **Click Generate**: Click the "Generate 3D Model" button and wait about 1-2 minutes
4. **View Results**: The 3D model will appear on the right, drag with mouse to rotate and view
### 💡 Tips for Best Results:
- Clear subjects with simple backgrounds work best
- Front-facing or 45-degree angle photos recommended
- If results aren't ideal, try adjusting the random seed and regenerating
- Check the example images below to see optimal input types
### 🎯 Use Cases:
- **Product Display**: Convert product images to 3D models for e-commerce
- **Creative Design**: Quickly obtain 3D prototypes for design reference
- **Game Development**: Generate initial 3D models for game assets
- **Educational Demos**: Convert flat diagrams to 3D for better spatial understanding
'''
block = gr.Blocks(title=_TITLE).queue()
with block:
with gr.Row():
with gr.Column():
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
# input image
input_image = gr.Image(
label="📷 Upload Image",
type="filepath"
)
seg_image = gr.Image(
label="🔍 Processed Image",
type="numpy",
interactive=False,
image_mode="RGBA"
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
gr.Markdown("""
### Parameter Guide:
- **Inference Steps**: More steps = higher quality but longer processing time
- **CFG Scale**: Controls generation accuracy, higher values stay closer to original
- **Grid Resolution**: 3D model detail level, higher = more detailed
- **Random Seed**: Same seed produces same results, useful for reproducing effects
- **Simplify Mesh**: Reduces model face count for lightweight applications
""")
# inference steps
num_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
step=1,
value=50,
info="Recommended: 30-70"
)
# cfg scale
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=2,
maximum=10,
step=0.1,
value=7.0,
info="Recommended: 6-8"
)
# grid resolution
input_grid_res = gr.Slider(
label="Grid Resolution",
minimum=256,
maximum=512,
step=1,
value=384,
info="Recommended: 384"
)
# random seed
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True,
info="Use different seed each time"
)
seed = gr.Slider(
label="Seed Value",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
# simplify mesh
with gr.Row():
simplify_mesh = gr.Checkbox(
label="Simplify Mesh",
value=False,
info="Reduce model complexity"
)
target_num_faces = gr.Slider(
label="Target Face Count",
minimum=10000,
maximum=1000000,
step=1000,
value=100000,
info="Lower count = simpler model"
)
# gen button
button_gen = gr.Button("🎯 Generate 3D Model", variant="primary", size="lg")
with gr.Column(scale=1):
# glb file
output_model = gr.Model3D(
label="🎭 3D Model Preview",
height=512
)
gr.Markdown("""
### 📌 Controls:
- 🖱️ **Left Click & Drag**: Rotate model
- 🖱️ **Right Click & Drag**: Pan view
- 🖱️ **Scroll Wheel**: Zoom in/out
- 📥 Click top-right corner to download GLB file
""")
with gr.Row():
gr.Markdown("### 🖼️ Example Images (Click to Try):")
gr.Examples(
examples=[
["examples/rabbit.png"],
["examples/robot.png"],
["examples/teapot.png"],
["examples/barrel.png"],
["examples/cactus.png"],
["examples/cyan_car.png"],
["examples/pickup.png"],
["examples/swivelchair.png"],
["examples/warhammer.png"],
],
fn=process_image,
inputs=[input_image],
outputs=[seg_image],
cache_examples=False
)
gr.Markdown("""
---
### ⚠️ Important Notes:
- Generation takes 1-2 minutes, please be patient
- Best results with clear, prominent subjects
- Generated models may need further optimization in professional 3D software
- Each colored section represents an independent 3D part
### 🤝 Technical Support:
Powered by NVIDIA PartPacker technology. For issues, please refer to the [official documentation](https://research.nvidia.com/labs/dir/partpacker/)
""")
button_gen.click(
process_image, inputs=[input_image], outputs=[seg_image]
).then(
get_random_seed, inputs=[randomize_seed, seed], outputs=[seed]
).then(
process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model]
)
block.launch()