Spaces:
cpuai
/
Running on Zero

File size: 11,728 Bytes
daa6779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb3552
 
daa6779
 
3cb3552
daa6779
3cb3552
917d511
4c2da87
 
 
 
 
 
 
b703ea2
 
 
02a7da8
3cb3552
daa6779
3cb3552
098a71e
917d511
3cb3552
 
 
 
 
 
 
 
 
917d511
ab069cf
daa6779
3cb3552
daa6779
 
 
8ba0984
daa6779
 
 
 
 
 
 
 
 
 
 
 
8ba0984
 
 
daa6779
 
 
8ba0984
daa6779
 
 
 
 
8ba0984
daa6779
 
 
 
 
 
 
 
 
 
 
3cb3552
daa6779
 
 
2fbebcf
daa6779
 
2fbebcf
 
daa6779
 
2fbebcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa6779
 
ed7b6ad
2fbebcf
daa6779
 
3cb3552
daa6779
 
 
 
3cb3552
 
 
2fbebcf
 
ed7b6ad
2fbebcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb3552
2fbebcf
 
 
 
 
 
 
 
3cb3552
2fbebcf
 
 
 
 
 
 
 
3cb3552
2fbebcf
 
 
 
 
 
 
 
3cb3552
 
2fbebcf
 
 
 
 
 
 
 
 
 
 
 
3cb3552
 
2fbebcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa6779
 
3cb3552
2fbebcf
 
ed7b6ad
2fbebcf
 
 
 
 
 
 
 
3cb3552
 
2fbebcf
3cb3552
 
 
 
 
 
 
 
 
 
 
 
2fbebcf
3cb3552
 
ed7b6ad
3cb3552
2fbebcf
 
 
 
 
 
 
 
 
 
 
 
3cb3552
 
 
 
 
 
 
 
daa6779
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import numpy as np
import cv2
import kiui
import trimesh
import torch
import rembg
from datetime import datetime
import subprocess
import gradio as gr

try:
    # running on Hugging Face Spaces
    import spaces

except ImportError:
    # running locally, use a dummy space
    class spaces:
        class GPU:
            def __init__(self, duration=60):
                self.duration = duration
            def __call__(self, func):
                return func


from flow.model import Model
from flow.configs.schema import ModelConfig
from flow.utils import get_random_color, recenter_foreground
from vae.utils import postprocess_mesh

# download checkpoints
from huggingface_hub import hf_hub_download
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt")
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt")

TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32)
MAX_SEED = np.iinfo(np.int32).max
bg_remover = rembg.new_session()

# model config
model_config = ModelConfig(
    vae_conf="vae.configs.part_woenc",
    vae_ckpt_path=vae_ckpt_path,
    qknorm=True,
    qknorm_type="RMSNorm",
    use_pos_embed=False,
    dino_model="dinov2_vitg14",
    hidden_dim=1536,
    flow_shift=3.0,
    logitnorm_mean=1.0,
    logitnorm_std=1.0,
    latent_size=4096,
    use_parts=True,
)

# instantiate model
model = Model(model_config).eval().cuda().bfloat16()

# load weight
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True)
model.load_state_dict(ckpt_dict, strict=True)

# get random seed
def get_random_seed(randomize_seed, seed):
    if randomize_seed:
        seed = np.random.randint(0, MAX_SEED)
    return seed

# process image
@spaces.GPU(duration=10)
def process_image(image_path):
    image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
    if image.shape[-1] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
    else:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        # bg removal if there is no alpha channel
        image = rembg.remove(image, session=bg_remover)  # [H, W, 4]
    mask = image[..., -1] > 0
    image = recenter_foreground(image, mask, border_ratio=0.1)
    image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA)
    return image

# process generation
@spaces.GPU(duration=90)
def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000):

    # seed
    kiui.seed_everything(seed)

    # output path
    os.makedirs("output", exist_ok=True)
    output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb"

    # input image (assume processed to RGBA uint8)
    image = input_image.astype(np.float32) / 255.0
    image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])  # white background
    image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda()

    data = {"cond_images": image_tensor}

    with torch.inference_mode():
        results = model(data, num_steps=num_steps, cfg_scale=cfg_scale)

    latent = results["latent"]

    # query mesh

    data_part0 = {"latent": latent[:, : model.config.latent_size, :]}
    data_part1 = {"latent": latent[:, model.config.latent_size :, :]}

    with torch.inference_mode():
        results_part0 = model.vae(data_part0, resolution=grid_res)
        results_part1 = model.vae(data_part1, resolution=grid_res)

    if not simplify_mesh:
        target_num_faces = -1

    vertices, faces = results_part0["meshes"][0]
    mesh_part0 = trimesh.Trimesh(vertices, faces)
    mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T
    mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces)
    parts = mesh_part0.split(only_watertight=False)

    vertices, faces = results_part1["meshes"][0]
    mesh_part1 = trimesh.Trimesh(vertices, faces)
    mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T
    mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces)
    parts.extend(mesh_part1.split(only_watertight=False))

    # split connected components and assign different colors
    for j, part in enumerate(parts):
        # each component uses a random color
        part.visual.vertex_colors = get_random_color(j, use_float=True)

    mesh = trimesh.Scene(parts)
    # export the whole mesh
    mesh.export(output_glb_path)

    return output_glb_path

# gradio UI

_TITLE = '''🎨 Image to 3D Model - Bring Your Images to Life!'''

_DESCRIPTION = '''
<div style="text-align: center; margin-bottom: 20px;">
    <h3 style="color: #2e7d32;">✨ Transform 2D Images into Stunning 3D Models with One Click ✨</h3>
</div>

### πŸš€ Key Features:
- **Smart Recognition**: Automatically identifies objects in images and generates corresponding 3D models
- **Part Separation**: Generated 3D models are automatically decomposed into multiple parts, each displayed in different colors
- **Background Removal**: Automatically removes image backgrounds to ensure only the main object is modeled
- **Universal Format**: Outputs standard GLB format, compatible with various 3D software

### πŸ“– How to Use:
1. **Upload Image**: Click the "Upload Image" area on the left to upload your picture (supports JPG, PNG, etc.)
2. **Adjust Settings** (Optional):
   - Higher inference steps = better quality but slower (default 50 recommended)
   - If unsatisfied with results, try different random seeds
3. **Click Generate**: Click the "Generate 3D Model" button and wait about 1-2 minutes
4. **View Results**: The 3D model will appear on the right, drag with mouse to rotate and view

### πŸ’‘ Tips for Best Results:
- Clear subjects with simple backgrounds work best
- Front-facing or 45-degree angle photos recommended
- If results aren't ideal, try adjusting the random seed and regenerating
- Check the example images below to see optimal input types

### 🎯 Use Cases:
- **Product Display**: Convert product images to 3D models for e-commerce
- **Creative Design**: Quickly obtain 3D prototypes for design reference
- **Game Development**: Generate initial 3D models for game assets
- **Educational Demos**: Convert flat diagrams to 3D for better spatial understanding
'''

block = gr.Blocks(title=_TITLE).queue()

with block:
    with gr.Row():
        with gr.Column():
            gr.Markdown('# ' + _TITLE)
    gr.Markdown(_DESCRIPTION)

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                # input image
                input_image = gr.Image(
                    label="πŸ“· Upload Image", 
                    type="filepath"
                )
                seg_image = gr.Image(
                    label="πŸ” Processed Image", 
                    type="numpy", 
                    interactive=False, 
                    image_mode="RGBA"
                )
            
            with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                gr.Markdown("""
                ### Parameter Guide:
                - **Inference Steps**: More steps = higher quality but longer processing time
                - **CFG Scale**: Controls generation accuracy, higher values stay closer to original
                - **Grid Resolution**: 3D model detail level, higher = more detailed
                - **Random Seed**: Same seed produces same results, useful for reproducing effects
                - **Simplify Mesh**: Reduces model face count for lightweight applications
                """)
                # inference steps
                num_steps = gr.Slider(
                    label="Inference Steps", 
                    minimum=1, 
                    maximum=100, 
                    step=1, 
                    value=50,
                    info="Recommended: 30-70"
                )
                # cfg scale
                cfg_scale = gr.Slider(
                    label="CFG Scale", 
                    minimum=2, 
                    maximum=10, 
                    step=0.1, 
                    value=7.0,
                    info="Recommended: 6-8"
                )
                # grid resolution
                input_grid_res = gr.Slider(
                    label="Grid Resolution", 
                    minimum=256, 
                    maximum=512, 
                    step=1, 
                    value=384,
                    info="Recommended: 384"
                )
                # random seed
                with gr.Row():
                    randomize_seed = gr.Checkbox(
                        label="Randomize Seed", 
                        value=True,
                        info="Use different seed each time"
                    )
                    seed = gr.Slider(
                        label="Seed Value", 
                        minimum=0, 
                        maximum=MAX_SEED, 
                        step=1, 
                        value=0
                    )
                # simplify mesh
                with gr.Row():
                    simplify_mesh = gr.Checkbox(
                        label="Simplify Mesh", 
                        value=False,
                        info="Reduce model complexity"
                    )
                    target_num_faces = gr.Slider(
                        label="Target Face Count", 
                        minimum=10000, 
                        maximum=1000000, 
                        step=1000, 
                        value=100000,
                        info="Lower count = simpler model"
                    )
                
            # gen button
            button_gen = gr.Button("🎯 Generate 3D Model", variant="primary", size="lg")

        with gr.Column(scale=1):
            # glb file
            output_model = gr.Model3D(
                label="🎭 3D Model Preview", 
                height=512
            )
            gr.Markdown("""
            ### πŸ“Œ Controls:
            - πŸ–±οΈ **Left Click & Drag**: Rotate model
            - πŸ–±οΈ **Right Click & Drag**: Pan view
            - πŸ–±οΈ **Scroll Wheel**: Zoom in/out
            - πŸ“₯ Click top-right corner to download GLB file
            """)

    with gr.Row():
        gr.Markdown("### πŸ–ΌοΈ Example Images (Click to Try):")
        gr.Examples(
            examples=[
                ["examples/rabbit.png"],
                ["examples/robot.png"],
                ["examples/teapot.png"],
                ["examples/barrel.png"],
                ["examples/cactus.png"],
                ["examples/cyan_car.png"],
                ["examples/pickup.png"],
                ["examples/swivelchair.png"],
                ["examples/warhammer.png"],
            ],
            fn=process_image,
            inputs=[input_image],
            outputs=[seg_image],
            cache_examples=False
        )
    
    gr.Markdown("""
    ---
    ### ⚠️ Important Notes:
    - Generation takes 1-2 minutes, please be patient
    - Best results with clear, prominent subjects
    - Generated models may need further optimization in professional 3D software
    - Each colored section represents an independent 3D part
    
    ### 🀝 Technical Support:
    Powered by NVIDIA PartPacker technology. For issues, please refer to the [official documentation](https://research.nvidia.com/labs/dir/partpacker/)
    """)

    button_gen.click(
        process_image, inputs=[input_image], outputs=[seg_image]
    ).then(
        get_random_seed, inputs=[randomize_seed, seed], outputs=[seed]
    ).then(
        process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model]
    )

block.launch()