|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
local_model_name = "codewithdark/latent-recurrent-depth-lm" |
|
tokenizer = AutoTokenizer.from_pretrained(local_model_name) |
|
model = AutoModelForCausalLM.from_pretrained(local_model_name) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def generate_response( |
|
message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
if model_choice == "Zephyr-7B (API)": |
|
response = "" |
|
for message in hf_client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
else: |
|
input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) |
|
output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
generate_response, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
gr.Radio(["Zephyr-7B (API)", "Latent Recurrent Depth LM"], value="Zephyr-7B (API)", label="Select Model"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|