Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from captum.attr import LayerGradCam
|
7 |
+
from captum.attr import visualization as viz
|
8 |
+
|
9 |
+
# --- 1. Load Model and Processor ---
|
10 |
+
# Load the pre-trained model and the image processor from Hugging Face.
|
11 |
+
# We explicitly set torch_dtype to float32 to ensure CPU compatibility.
|
12 |
+
print("Loading model and processor...")
|
13 |
+
model_id = "Organika/sdxl-detector"
|
14 |
+
processor = AutoImageProcessor.from_pretrained(model_id)
|
15 |
+
model = AutoModelForImageClassification.from_pretrained(model_id, torch_dtype=torch.float32)
|
16 |
+
model.eval() # Set the model to evaluation mode
|
17 |
+
print("Model and processor loaded successfully.")
|
18 |
+
|
19 |
+
# --- 2. Define the Explainability (Grad-CAM) Function ---
|
20 |
+
# This function generates the heatmap showing which parts of the image the model focused on.
|
21 |
+
def generate_heatmap(image_tensor, original_image, target_class_index):
|
22 |
+
# LayerGradCam requires a specific layer to hook into. For ConvNeXT models (like this one),
|
23 |
+
# a good choice is the final layer of the last stage of the encoder.
|
24 |
+
target_layer = model.convnext.encoder.stages[-1].layers[-1].dwconv
|
25 |
+
|
26 |
+
# Initialize LayerGradCam
|
27 |
+
lgc = LayerGradCam(model, target_layer)
|
28 |
+
|
29 |
+
# Generate attributions (the "importance" of each pixel)
|
30 |
+
# The baselines are a reference point, typically a black image.
|
31 |
+
baselines = torch.zeros_like(image_tensor)
|
32 |
+
attributions = lgc.attribute(image_tensor, target=target_class_index, baselines=baselines, relu_attributions=True)
|
33 |
+
|
34 |
+
# The output of LayerGradCam is a heatmap. We process it for visualization.
|
35 |
+
# We take the mean across the color channels and format it correctly.
|
36 |
+
heatmap = np.transpose(attributions.squeeze(0).cpu().detach().numpy(), (1, 2, 0))
|
37 |
+
|
38 |
+
# Use Captum's visualization tool to overlay the heatmap on the original image.
|
39 |
+
visualized_image, _ = viz.visualize_image_attr(
|
40 |
+
heatmap,
|
41 |
+
np.array(original_image),
|
42 |
+
method="blended_heat_map",
|
43 |
+
sign="all",
|
44 |
+
show_colorbar=True,
|
45 |
+
title="Model Attention Heatmap",
|
46 |
+
)
|
47 |
+
return visualized_image
|
48 |
+
|
49 |
+
# --- 3. Define the Main Prediction Function ---
|
50 |
+
# This function will be called by Gradio every time a user uploads an image.
|
51 |
+
def predict(input_image: Image.Image):
|
52 |
+
print(f"Received image of size: {input_image.size}")
|
53 |
+
|
54 |
+
# Convert image to RGB if it has an alpha channel
|
55 |
+
if input_image.mode == 'RGBA':
|
56 |
+
input_image = input_image.convert('RGB')
|
57 |
+
|
58 |
+
# Preprocess the image for the model
|
59 |
+
inputs = processor(images=input_image, return_tensors="pt")
|
60 |
+
|
61 |
+
# Make a prediction
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = model(**inputs)
|
64 |
+
logits = outputs.logits
|
65 |
+
|
66 |
+
# Convert logits to probabilities
|
67 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
68 |
+
|
69 |
+
# Get the predicted class index and the confidence score
|
70 |
+
predicted_class_idx = logits.argmax(-1).item()
|
71 |
+
confidence_score = probabilities[0][predicted_class_idx].item()
|
72 |
+
|
73 |
+
# Get the label name (e.g., 'ai' or 'human')
|
74 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
75 |
+
|
76 |
+
# --- Generate Human-Readable Explanation ---
|
77 |
+
# This directly answers your requirement to "say out which one is less human".
|
78 |
+
if predicted_label.lower() == 'ai':
|
79 |
+
explanation = (
|
80 |
+
f"The model is {confidence_score:.2%} confident that this image is AI-GENERATED.\n\n"
|
81 |
+
"The heatmap on the right highlights the areas that most influenced this decision. "
|
82 |
+
"According to your research, pay close attention if these hotspots are on "
|
83 |
+
"unnatural-looking features like hair, eyes, skin texture, or strange background details."
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
explanation = (
|
87 |
+
f"The model is {confidence_score:.2%} confident that this image is HUMAN-MADE.\n\n"
|
88 |
+
"The heatmap shows which areas the model found to be most 'natural'. "
|
89 |
+
"These are likely well-formed, realistic features that AI models often struggle to replicate perfectly."
|
90 |
+
)
|
91 |
+
|
92 |
+
# --- Generate the Heatmap ---
|
93 |
+
# We call our Grad-CAM function to create the visualization.
|
94 |
+
print("Generating heatmap...")
|
95 |
+
heatmap_image = generate_heatmap(inputs['pixel_values'], input_image, predicted_class_idx)
|
96 |
+
print("Heatmap generated.")
|
97 |
+
|
98 |
+
# Return the classification labels, the text explanation, and the heatmap image
|
99 |
+
# The labels dictionary is for the gr.Label component.
|
100 |
+
labels_dict = {model.config.id2label[i]: float(probabilities[0][i]) for i in range(len(model.config.id2label))}
|
101 |
+
|
102 |
+
return labels_dict, explanation, heatmap_image
|
103 |
+
|
104 |
+
# --- 4. Create the Gradio Interface ---
|
105 |
+
# This sets up the web UI with inputs and outputs.
|
106 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
107 |
+
gr.Markdown(
|
108 |
+
"""
|
109 |
+
# AI Image Detector with Explainability
|
110 |
+
Upload an image to determine if it was generated by AI or created by a human.
|
111 |
+
This tool uses the [Organika/sdxl-detector](https://huggingface.co/Organika/sdxl-detector) model.
|
112 |
+
In addition to the prediction, it provides a **heatmap** to show *why* the model made its decision, highlighting the areas it found most suspicious or authentic.
|
113 |
+
"""
|
114 |
+
)
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
118 |
+
submit_btn = gr.Button("Analyze Image", variant="primary")
|
119 |
+
with gr.Column():
|
120 |
+
output_label = gr.Label(label="Prediction")
|
121 |
+
output_text = gr.Textbox(label="Explanation", lines=6)
|
122 |
+
output_heatmap = gr.Image(label="Model Attention Heatmap")
|
123 |
+
|
124 |
+
submit_btn.click(
|
125 |
+
fn=predict,
|
126 |
+
inputs=input_image,
|
127 |
+
outputs=[output_label, output_text, output_heatmap]
|
128 |
+
)
|
129 |
+
|
130 |
+
gr.Examples(
|
131 |
+
examples=[
|
132 |
+
["examples/ai_example_1.png"],
|
133 |
+
["examples/human_example_1.jpg"],
|
134 |
+
["examples/ai_example_2.png"],
|
135 |
+
],
|
136 |
+
inputs=input_image,
|
137 |
+
outputs=[output_label, output_text, output_heatmap],
|
138 |
+
fn=predict,
|
139 |
+
cache_examples=True # Speeds up demo loading
|
140 |
+
)
|
141 |
+
|
142 |
+
# Create some example files for the demo
|
143 |
+
import os
|
144 |
+
from urllib.request import urlretrieve
|
145 |
+
os.makedirs("examples", exist_ok=True)
|
146 |
+
urlretrieve("https://huggingface.co/Organika/sdxl-detector/resolve/main/ai.png", "examples/ai_example_1.png")
|
147 |
+
urlretrieve("https://huggingface.co/Organika/sdxl-detector/resolve/main/human.png", "examples/human_example_1.jpg")
|
148 |
+
urlretrieve("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/stable-diffusion-sdxl/sdxl-gfpgan-output.png", "examples/ai_example_2.png")
|
149 |
+
|
150 |
+
|
151 |
+
# --- 5. Launch the App ---
|
152 |
+
if __name__ == "__main__":
|
153 |
+
demo.launch(debug=True) # debug=True lets you see print statements in the logs
|