Spaces:
Runtime error
Runtime error
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from huggingface_hub import hf_hub_download | |
| from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor | |
| from transformers.pipelines import VideoClassificationPipeline, pipeline | |
| from transformers.testing_utils import ( | |
| is_pipeline_test, | |
| nested_simplify, | |
| require_decord, | |
| require_tf, | |
| require_torch, | |
| require_torch_or_tf, | |
| require_vision, | |
| ) | |
| from .test_pipelines_common import ANY | |
| class VideoClassificationPipelineTests(unittest.TestCase): | |
| model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING | |
| def get_test_pipeline(self, model, tokenizer, processor): | |
| example_video_filepath = hf_hub_download( | |
| repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" | |
| ) | |
| video_classifier = VideoClassificationPipeline(model=model, image_processor=processor, top_k=2) | |
| examples = [ | |
| example_video_filepath, | |
| "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", | |
| ] | |
| return video_classifier, examples | |
| def run_pipeline_test(self, video_classifier, examples): | |
| for example in examples: | |
| outputs = video_classifier(example) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| {"score": ANY(float), "label": ANY(str)}, | |
| {"score": ANY(float), "label": ANY(str)}, | |
| ], | |
| ) | |
| def test_small_model_pt(self): | |
| small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" | |
| small_feature_extractor = VideoMAEFeatureExtractor( | |
| size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} | |
| ) | |
| video_classifier = pipeline( | |
| "video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4 | |
| ) | |
| video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset") | |
| outputs = video_classifier(video_file_path, top_k=2) | |
| self.assertEqual( | |
| nested_simplify(outputs, decimals=4), | |
| [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], | |
| ) | |
| outputs = video_classifier( | |
| [ | |
| video_file_path, | |
| video_file_path, | |
| ], | |
| top_k=2, | |
| ) | |
| self.assertEqual( | |
| nested_simplify(outputs, decimals=4), | |
| [ | |
| [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], | |
| [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], | |
| ], | |
| ) | |
| def test_small_model_tf(self): | |
| pass | |