Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from transformers import ( | |
| MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
| TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
| Text2TextGenerationPipeline, | |
| pipeline, | |
| ) | |
| from transformers.testing_utils import is_pipeline_test, require_tf, require_torch | |
| from transformers.utils import is_torch_available | |
| from .test_pipelines_common import ANY | |
| if is_torch_available(): | |
| import torch | |
| class Text2TextGenerationPipelineTests(unittest.TestCase): | |
| model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
| tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
| def get_test_pipeline(self, model, tokenizer, processor): | |
| generator = Text2TextGenerationPipeline(model=model, tokenizer=tokenizer) | |
| return generator, ["Something to write", "Something else"] | |
| def run_pipeline_test(self, generator, _): | |
| outputs = generator("Something there") | |
| self.assertEqual(outputs, [{"generated_text": ANY(str)}]) | |
| # These are encoder decoder, they don't just append to incoming string | |
| self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) | |
| outputs = generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
| [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
| ], | |
| ) | |
| outputs = generator( | |
| ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True | |
| ) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
| [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], | |
| ], | |
| ) | |
| with self.assertRaises(ValueError): | |
| generator(4) | |
| def test_small_model_pt(self): | |
| generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="pt") | |
| # do_sample=False necessary for reproducibility | |
| outputs = generator("Something there", do_sample=False) | |
| self.assertEqual(outputs, [{"generated_text": ""}]) | |
| num_return_sequences = 3 | |
| outputs = generator( | |
| "Something there", | |
| num_return_sequences=num_return_sequences, | |
| num_beams=num_return_sequences, | |
| ) | |
| target_outputs = [ | |
| {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, | |
| {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, | |
| {"generated_text": ""}, | |
| ] | |
| self.assertEqual(outputs, target_outputs) | |
| outputs = generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| {"generated_token_ids": ANY(torch.Tensor)}, | |
| {"generated_token_ids": ANY(torch.Tensor)}, | |
| ], | |
| ) | |
| generator.tokenizer.pad_token_id = generator.model.config.eos_token_id | |
| generator.tokenizer.pad_token = "<pad>" | |
| outputs = generator( | |
| ["This is a test", "This is a second test"], | |
| do_sample=True, | |
| num_return_sequences=2, | |
| batch_size=2, | |
| return_tensors=True, | |
| ) | |
| self.assertEqual( | |
| outputs, | |
| [ | |
| [ | |
| {"generated_token_ids": ANY(torch.Tensor)}, | |
| {"generated_token_ids": ANY(torch.Tensor)}, | |
| ], | |
| [ | |
| {"generated_token_ids": ANY(torch.Tensor)}, | |
| {"generated_token_ids": ANY(torch.Tensor)}, | |
| ], | |
| ], | |
| ) | |
| def test_small_model_tf(self): | |
| generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="tf") | |
| # do_sample=False necessary for reproducibility | |
| outputs = generator("Something there", do_sample=False) | |
| self.assertEqual(outputs, [{"generated_text": ""}]) | |