File size: 9,953 Bytes
01b0eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# single_person_processor.py

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # Suppress TensorFlow warnings
import io
import logging
import numpy as np
import tensorflow as tf
from rembg import new_session, remove
from PIL import Image
from typing import Tuple, Dict
from tensorflow.keras.preprocessing.image import img_to_array

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')


class ImagePreprocessor:
    """Class to preprocess images by removing background."""

    def __init__(self, img_size: Tuple[int, int] = (128, 128)):
        """

        Initialize the image preprocessor.



        Parameters:

        - img_size: Target size for images (default is (128, 128)).

        """
        self.img_size = img_size
        self.session = new_session()  # Create a new session for rembg
        logging.info("Image processor initialized.")

    def process_single_person(self, front_path: str, side_path: str) -> Tuple[np.ndarray, np.ndarray]:
        """

        Process two images (front and side views).



        Parameters:

        - front_path: Path to the front image.

        - side_path: Path to the side image.



        Returns:

        - A tuple containing processed front and side images as NumPy arrays.

        """
        return (
            self._process_image(front_path),
            self._process_image(side_path)
        )

    def _process_image(self, image_path: str) -> np.ndarray:
        """

        Remove background and process a single image.



        Parameters:

        - image_path: Path to the image file.



        Returns:

        - Processed image as a NumPy array.

        """
        try:
            with open(image_path, "rb") as f:
                img_bytes = f.read()

            # Remove background using rembg
            bg_removed = Image.open(io.BytesIO(remove(img_bytes, session=self.session)))

            # Convert person to white and background to black
            white_img = Image.new("RGBA", bg_removed.size, (255, 255, 255, 255))
            white_img.putalpha(bg_removed.getchannel('A'))
            final_img = Image.alpha_composite(
                Image.new("RGBA", white_img.size, (0, 0, 0, 255)),
                white_img
            )

            # Prepare the image for the model
            return self._prepare_image(final_img)

        except Exception as e:
            logging.error(f"Failed to process {image_path}: {str(e)}")
            raise

    def _prepare_image(self, image: Image.Image) -> np.ndarray:
        """

        Convert the image to the model's input format.



        Parameters:

        - image: PIL Image object.



        Returns:

        - Image as a normalized NumPy array.

        """
        return img_to_array(
            image.convert('L').resize(self.img_size)
        ).astype(np.float32) / 255.0


class SinglePersonPredictor:
    """Class to predict body measurements and clothing sizes."""

    MEASUREMENT_INDICES = {
        'ankle': 0, 'arm-length': 1, 'bicep': 2, 'calf': 3,
        'chest': 4, 'forearm': 5, 'height': 6, 'hip': 7,
        'leg-length': 8, 'shoulder-breadth': 9,
        'shoulder-to-crotch': 10, 'thigh': 11, 'waist': 12, 'wrist': 13
    }

    SIZE_CHARTS = {
        'male': {
            'tshirt': [
                (97, 42, 'S'), (104, 45, 'M'), (112, 48, 'L'),
                (120, 51, 'XL'), (128, 54, 'XXL'), (136, 57, 'XXXL')
            ],
            'pants': [
                (76, 102, 30), (81, 107, 32), (86, 112, 34),
                (91, 117, 36), (97, 122, 38), (102, 127, 40), (107, 132, 42)
            ]
        },
        'female': {
            'tshirt': [
                (89, 38, 'S'), (96, 41, 'M'), (104, 44, 'L'),
                (112, 47, 'XL'), (120, 50, 'XXL'), (128, 53, 'XXXL')
            ],
            'pants': [
                (66, 92, 26), (71, 97, 28), (76, 102, 30),
                (81, 107, 32), (86, 112, 34), (91, 117, 36), (97, 122, 38)
            ]
        }
    }

    def __init__(self, model_path: str = 'best_model.keras'):
        """

        Initialize the predictor.



        Parameters:

        - model_path: Path to the trained model.

        """
        self.model = tf.keras.models.load_model(model_path)
        self.preprocessor = ImagePreprocessor()
        logging.info("Model loaded successfully.")

    def predict_measurements(self,

                             front_img_path: str,

                             side_img_path: str,

                             gender: int,

                             height_cm: float,

                             weight_kg: float,

                             apparel_type: str = "all") -> Dict:
        """

        Perform predictions for a single person and calculate clothing sizes.



        Parameters:

        - front_img_path: Path to the front image.

        - side_img_path: Path to the side image.

        - gender: 0 for male, 1 for female.

        - height_cm: Height in centimeters.

        - weight_kg: Weight in kilograms.

        - apparel_type: Specify "tshirt", "pants", or "all".



        Returns:

        - Dictionary containing predicted measurements and clothing sizes.

        """
        try:
            # Validate inputs
            if gender not in (0, 1):
                raise ValueError("Gender must be 0 (male) or 1 (female).")
            if not 100 <= height_cm <= 250:
                raise ValueError("Height must be between 100-250 cm.")
            if not 30 <= weight_kg <= 300:
                raise ValueError("Weight must be between 30-300 kg.")
            if apparel_type not in ["tshirt", "pants", "all"]:
                raise ValueError("Apparel type must be 'tshirt', 'pants', or 'all'.")

            # Process images
            front_arr, side_arr = self.preprocessor.process_single_person(front_img_path, side_img_path)
            meta_arr = np.array([[gender, height_cm, weight_kg]], dtype=np.float32)

            # Make predictions
            prediction = self.model.predict([
                np.expand_dims(front_arr, axis=0),
                np.expand_dims(side_arr, axis=0),
                meta_arr
            ])

            # Convert predictions to dictionary
            measurements = {
                name: round(float(prediction[0][idx]), 2)
                for name, idx in self.MEASUREMENT_INDICES.items()
            }

            result = {}

            if apparel_type == "tshirt":
                result["tshirt_size"] = self.calculate_tshirt_size(gender, measurements, weight_kg)

            elif apparel_type == "pants":
                result["pants_size"] = self.calculate_pants_size(gender, measurements, weight_kg)

            elif apparel_type == "all":
                result["body_measurements"] = measurements
                tshirt_size, pants_size = self.calculate_apparel_size(gender, measurements, weight_kg)
                result["tshirt_size"] = tshirt_size
                result["pants_size"] = pants_size

            return result

        except Exception as e:
            logging.error(f"Prediction failed: {str(e)}")
            raise

    def calculate_tshirt_size(self, gender: int, measurements: Dict, weight: float) -> str:
        """

        Calculate t-shirt size based on chest and shoulder-breadth measurements.



        Parameters:

        - gender: 0 for male, 1 for female.

        - measurements: Dictionary of body measurements.

        - weight: Weight in kilograms.



        Returns:

        - T-Shirt size as a string.

        """
        gender_str = 'male' if gender == 0 else 'female'
        chart = self.SIZE_CHARTS[gender_str]['tshirt']

        chest = measurements['chest']
        shoulder_breadth = measurements['shoulder-breadth']

        base_size = next(
            (size for max_chest, max_shoulder, size in chart
             if chest <= max_chest and shoulder_breadth <= max_shoulder),
            'XXXL'
        )

        if weight > 95 and gender == 0 or weight > 80 and gender == 1:
            base_size = 'XXL'

        if measurements['height'] > 180:
            base_size = f"Tall {base_size}"

        return base_size

    def calculate_pants_size(self, gender: int, measurements: Dict, weight: float) -> int:
        """

        Calculate pants size based on waist and hip measurements.



        Parameters:

        - gender: 0 for male, 1 for female.

        - measurements: Dictionary of body measurements.

        - weight: Weight in kilograms.



        Returns:

        - Pants size as an integer.

        """
        gender_str = 'male' if gender == 0 else 'female'
        chart = self.SIZE_CHARTS[gender_str]['pants']

        waist = measurements['waist']
        hip = measurements['hip']

        base_size = next(
            (size for max_waist, max_hip, size in chart
             if waist <= max_waist and hip <= max_hip),
            chart[-1][2]
        )

        if measurements['height'] > 180 and gender == 0:
            base_size += 2 if base_size < 40 else 0

        return base_size

    def calculate_apparel_size(self, gender: int, measurements: Dict, weight: float) -> Tuple[str, int]:
        """

        Calculate both t-shirt and pants sizes.



        Parameters:

        - gender: 0 for male, 1 for female.

        - measurements: Dictionary of body measurements.

        - weight: Weight in kilograms.



        Returns:

        - A tuple containing t-shirt size and pants size.

        """
        tshirt_size = self.calculate_tshirt_size(gender, measurements, weight)
        pants_size = self.calculate_pants_size(gender, measurements, weight)
        return tshirt_size, pants_size