Spaces:
Paused
Paused
File size: 9,121 Bytes
7db35c9 b701f71 7db35c9 96af359 8bef1e4 7db35c9 96af359 7db35c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import plotly.graph_objs as go
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import plotly.express as px
import numpy as np
import os
import pprint
import codecs
import chardet
import gradio as gr
from langchain.llms import HuggingFacePipeline, OpenAIChat
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate
from langchain.chains.conversation.memory import ConversationBufferMemory
from EdgeGPT import Chatbot
import whisper
from datetime import datetime
import json
import requests
from langchain.chains.question_answering import load_qa_chain
import langchain
class ChatbotClass:
def __init__(self):
FOLDER_PATH = './data/eqe-manual'
QUERY = 'How do I charge my vehicle?'
K = 10
self.whisper_model = whisper.load_model(name='tiny')
self.embeddings = HuggingFaceEmbeddings()
self.index = FAISS.load_local(
folder_path=FOLDER_PATH, embeddings=self.embeddings
)
self.llm = OpenAIChat(temperature=0)
self.memory = ConversationBufferMemory(
memory_key="chat_history", input_key="human_input", return_messages=True
)
self.keyword_chain = self.init_keyword_chain()
self.context_chain = self.init_context_chain()
self.document_retrieval_chain = self.init_document_retrieval()
self.conversation_chain = self.init_conversation()
def format_history(self, memory):
history = memory.chat_memory.messages
if len(history) == 0:
return []
formatted_history = []
for h in history:
if isinstance(h, langchain.schema.HumanMessage):
user_response = h.content
elif isinstance(h, langchain.schema.AIMessage):
ai_response = h.content
formatted_history.append((user_response, ai_response))
return formatted_history
def init_document_retrieval(self):
retrieve_documents_template = """This function retrieves exerts from a Vehicle Owner's Manual. The function is useful for adding vehicle-specific context to answer questions. Based on a request, determine if vehicle specific information is needed. Respond with "Yes" or "No". If the answer is both, respond with "Yes":\nrequest: How do I change the tire?\nresponse: Yes\nrequest: Hello\nresponse: No\nrequest: I was in an accident. What should I do?\nresponse: Yes\nrequest: {request}\nresponse:"""
prompt_template = PromptTemplate(
input_variables=["request"],
template=retrieve_documents_template
)
document_retrieval_chain = LLMChain(
llm=self.llm, prompt=prompt_template, verbose=True
)
return document_retrieval_chain
def init_keyword_chain(self):
keyword_template = """You are a vehicle owner searching for content in your vehicle's owner manual. Your job is to come up with keywords to use when searching inside your manual, based on a question you have.
Question: {question}
Keywords:"""
prompt_template = PromptTemplate(
input_variables=["question"], template=keyword_template
)
keyword_chain = LLMChain(
llm=self.llm, prompt=prompt_template, verbose=True)
return keyword_chain
def init_context_chain(self):
context_template = """You are a friendly and helpful chatbot having a conversation with a human.
Given the following extracted parts of a long document and a question, create a final answer.
{context}
{chat_history}
Human: {human_input}
Chatbot:"""
context_prompt = PromptTemplate(
input_variables=["chat_history", "human_input", "context"],
template=context_template
)
self.memory = ConversationBufferMemory(
memory_key="chat_history", input_key="human_input", return_messages=True
)
context_chain = load_qa_chain(
self.llm, chain_type="stuff", memory=self.memory, prompt=context_prompt
)
return context_chain
def init_conversation(self):
template = """You are a chatbot having a conversation with a human.
{chat_history}
Human: {human_input}
Chatbot:"""
prompt = PromptTemplate(
input_variables=["chat_history", "human_input"],
template=template
)
conversation_chain = LLMChain(
llm=self.llm,
prompt=prompt,
verbose=True,
memory=self.memory,
)
return conversation_chain
def transcribe_audio(self, audio_file, model):
result = self.whisper_model.transcribe(audio_file)
return result['text']
def ask_question(self, query, k=4):
tool_usage = self.document_retrieval_chain.run(query)
print('\033[1;32m' f'search manual?: {tool_usage}' "\033[0m")
chat_history = self.format_history(self.memory)
if tool_usage == 'Yes':
keywords = self.keyword_chain.run(question=query)
print('\033[1;32m' f'keywords:{keywords}' "\033[0m")
context = self.index.similarity_search(query=keywords, k=k)
result = self.context_chain.run(
input_documents=context, human_input=query
)
else:
result = self.conversation_chain.run(query)
return [(query, result)], chat_history
def invoke_exh_api(self, bot_response, bot_name='Zippy', voice_name='Fiona', idle_url='https://ugc-idle.s3-us-west-2.amazonaws.com/4a6a607a466bdf6605bbd97ef146751b.mp4', animation_pipeline='high_quality', bearer_token='eyJhbGciOiJIUzUxMiJ9.eyJ1c2VybmFtZSI6IndlYiJ9.LSzIQx6h61l5FXs52s0qcY8WqauET6z9nnxgSzvoNBx8RYEKm8OpOohcK8wjuwteV4ZGug4NOjoGQoUZIKH84A'):
if len(bot_response) > 200:
print('Input is over 200 characters. Shorten the message')
url = 'https://api.exh.ai/animations/v1/generate_lipsync'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36 Edg/110.0.1587.46',
'authority': 'api.exh.ai',
'accept': '*/*',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'en-US,en;q=0.9',
'authorization': f'Bearer {bearer_token}',
'content-type': 'application/json',
'origin': 'https://admin.exh.ai',
'referer': 'https://admin.exh.ai/',
'sec-ch-ua': '"Chromium";v="110", "Not A(Brand";v="24", "Microsoft Edge";v="110"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-site',
}
data = {
'bot_name': bot_name,
'bot_response': bot_response,
'voice_name': voice_name,
'idle_url': idle_url,
'animation_pipeline': animation_pipeline,
}
r = requests.post(url, headers=headers, data=json.dumps(data))
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S%f')
outfile = f'talking_head_{timestamp}.mp4'
with open(outfile, 'wb') as f:
f.write(r.content)
return outfile
def predict(self, input_data, state=[], k=4, input_type='audio'):
if input_type == 'audio':
txt = self.transcribe_audio(input_data[0], self.whisper_model)
else:
txt = input_data[1]
result, chat_history = self.ask_question(txt, k=k)
state.append(chat_history)
return result, state
def predict_wrapper(self, input_text=None, input_audio=None):
if input_audio is not None:
result, state = self.predict(
input_data=(input_audio,), input_type='audio')
else:
result, state = self.predict(
input_data=('', input_text), input_type='text')
response = result[0][1][:195]
avatar = self.invoke_exh_api(response)
return result,avatar
man_chatbot = ChatbotClass()
iface = gr.Interface(
fn=man_chatbot.predict_wrapper,
inputs=[gr.inputs.Textbox(label="Text Input"),
gr.inputs.Audio(source="microphone", type='filepath')],
outputs=[gr.outputs.Textbox(label="Result"),
gr.outputs.Video().style(width=360, height=360, container=True)]
)
iface.launch()
'''
iface.launch()
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(
container=False)
k_slider = gr.Slider(minimum=1, maximum=10, default=4,label='k')
txt.submit(man_chatbot.predict, [txt, state,k_slider],[chatbot,state])
demo.launch()
''' |